File size: 15,649 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import Conv2d, build_activation_layer, build_norm_layer
from mmcv.cnn.bricks import DropPath
from mmcv.cnn.bricks.transformer import PatchEmbed
from mmengine.model import BaseModule, ModuleList
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm

from mmpretrain.registry import MODELS
from .base_backbone import BaseBackbone


class MixFFN(BaseModule):
    """An implementation of MixFFN of VAN. Refer to
    mmdetection/mmdet/models/backbones/pvt.py.

    The differences between MixFFN & FFN:
        1. Use 1X1 Conv to replace Linear layer.
        2. Introduce 3X3 Depth-wise Conv to encode positional information.

    Args:
        embed_dims (int): The feature dimension. Same as
            `MultiheadAttention`.
        feedforward_channels (int): The hidden dimension of FFNs.
        act_cfg (dict, optional): The activation config for FFNs.
            Default: dict(type='GELU').
        ffn_drop (float, optional): Probability of an element to be
            zeroed in FFN. Default 0.0.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 feedforward_channels,
                 act_cfg=dict(type='GELU'),
                 ffn_drop=0.,
                 init_cfg=None):
        super(MixFFN, self).__init__(init_cfg=init_cfg)

        self.embed_dims = embed_dims
        self.feedforward_channels = feedforward_channels
        self.act_cfg = act_cfg

        self.fc1 = Conv2d(
            in_channels=embed_dims,
            out_channels=feedforward_channels,
            kernel_size=1)
        self.dwconv = Conv2d(
            in_channels=feedforward_channels,
            out_channels=feedforward_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            bias=True,
            groups=feedforward_channels)
        self.act = build_activation_layer(act_cfg)
        self.fc2 = Conv2d(
            in_channels=feedforward_channels,
            out_channels=embed_dims,
            kernel_size=1)
        self.drop = nn.Dropout(ffn_drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class LKA(BaseModule):
    """Large Kernel Attention(LKA) of VAN.

    .. code:: text
            DW_conv (depth-wise convolution)
                            |
                            |
        DW_D_conv (depth-wise dilation convolution)
                            |
                            |
        Transition Convolution (1×1 convolution)

    Args:
        embed_dims (int): Number of input channels.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self, embed_dims, init_cfg=None):
        super(LKA, self).__init__(init_cfg=init_cfg)

        # a spatial local convolution (depth-wise convolution)
        self.DW_conv = Conv2d(
            in_channels=embed_dims,
            out_channels=embed_dims,
            kernel_size=5,
            padding=2,
            groups=embed_dims)

        # a spatial long-range convolution (depth-wise dilation convolution)
        self.DW_D_conv = Conv2d(
            in_channels=embed_dims,
            out_channels=embed_dims,
            kernel_size=7,
            stride=1,
            padding=9,
            groups=embed_dims,
            dilation=3)

        self.conv1 = Conv2d(
            in_channels=embed_dims, out_channels=embed_dims, kernel_size=1)

    def forward(self, x):
        u = x.clone()
        attn = self.DW_conv(x)
        attn = self.DW_D_conv(attn)
        attn = self.conv1(attn)

        return u * attn


class SpatialAttention(BaseModule):
    """Basic attention module in VANBloack.

    Args:
        embed_dims (int): Number of input channels.
        act_cfg (dict, optional): The activation config for FFNs.
            Default: dict(type='GELU').
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self, embed_dims, act_cfg=dict(type='GELU'), init_cfg=None):
        super(SpatialAttention, self).__init__(init_cfg=init_cfg)

        self.proj_1 = Conv2d(
            in_channels=embed_dims, out_channels=embed_dims, kernel_size=1)
        self.activation = build_activation_layer(act_cfg)
        self.spatial_gating_unit = LKA(embed_dims)
        self.proj_2 = Conv2d(
            in_channels=embed_dims, out_channels=embed_dims, kernel_size=1)

    def forward(self, x):
        shorcut = x.clone()
        x = self.proj_1(x)
        x = self.activation(x)
        x = self.spatial_gating_unit(x)
        x = self.proj_2(x)
        x = x + shorcut
        return x


class VANBlock(BaseModule):
    """A block of VAN.

    Args:
        embed_dims (int): Number of input channels.
        ffn_ratio (float): The expansion ratio of feedforward network hidden
            layer channels. Defaults to 4.
        drop_rate (float): Dropout rate after embedding. Defaults to 0.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.1.
        act_cfg (dict, optional): The activation config for FFNs.
            Default: dict(type='GELU').
        layer_scale_init_value (float): Init value for Layer Scale.
            Defaults to 1e-2.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 ffn_ratio=4.,
                 drop_rate=0.,
                 drop_path_rate=0.,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='BN', eps=1e-5),
                 layer_scale_init_value=1e-2,
                 init_cfg=None):
        super(VANBlock, self).__init__(init_cfg=init_cfg)
        self.out_channels = embed_dims

        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]
        self.attn = SpatialAttention(embed_dims, act_cfg=act_cfg)
        self.drop_path = DropPath(
            drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]
        mlp_hidden_dim = int(embed_dims * ffn_ratio)
        self.mlp = MixFFN(
            embed_dims=embed_dims,
            feedforward_channels=mlp_hidden_dim,
            act_cfg=act_cfg,
            ffn_drop=drop_rate)
        self.layer_scale_1 = nn.Parameter(
            layer_scale_init_value * torch.ones((embed_dims)),
            requires_grad=True) if layer_scale_init_value > 0 else None
        self.layer_scale_2 = nn.Parameter(
            layer_scale_init_value * torch.ones((embed_dims)),
            requires_grad=True) if layer_scale_init_value > 0 else None

    def forward(self, x):
        identity = x
        x = self.norm1(x)
        x = self.attn(x)
        if self.layer_scale_1 is not None:
            x = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * x
        x = identity + self.drop_path(x)

        identity = x
        x = self.norm2(x)
        x = self.mlp(x)
        if self.layer_scale_2 is not None:
            x = self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * x
        x = identity + self.drop_path(x)

        return x


class VANPatchEmbed(PatchEmbed):
    """Image to Patch Embedding of VAN.

    The differences between VANPatchEmbed & PatchEmbed:
        1. Use BN.
        2. Do not use 'flatten' and 'transpose'.
    """

    def __init__(self, *args, norm_cfg=dict(type='BN'), **kwargs):
        super(VANPatchEmbed, self).__init__(*args, norm_cfg=norm_cfg, **kwargs)

    def forward(self, x):
        """
        Args:
            x (Tensor): Has shape (B, C, H, W). In most case, C is 3.
        Returns:
            tuple: Contains merged results and its spatial shape.
            - x (Tensor): Has shape (B, out_h * out_w, embed_dims)
            - out_size (tuple[int]): Spatial shape of x, arrange as
              (out_h, out_w).
        """

        if self.adaptive_padding:
            x = self.adaptive_padding(x)

        x = self.projection(x)
        out_size = (x.shape[2], x.shape[3])
        if self.norm is not None:
            x = self.norm(x)
        return x, out_size


@MODELS.register_module()
class VAN(BaseBackbone):
    """Visual Attention Network.

    A PyTorch implement of : `Visual Attention Network
    <https://arxiv.org/pdf/2202.09741v2.pdf>`_

    Inspiration from
    https://github.com/Visual-Attention-Network/VAN-Classification

    Args:
        arch (str | dict): Visual Attention Network architecture.
            If use string, choose from 'tiny', 'small', 'base' and 'large'.
            If use dict, it should have below keys:

            - **embed_dims** (List[int]): The dimensions of embedding.
            - **depths** (List[int]): The number of blocks in each stage.
            - **ffn_ratios** (List[int]): The number of expansion ratio of
              feedforward network hidden layer channels.

            Defaults to 'tiny'.
        patch_sizes (List[int | tuple]): The patch size in patch embeddings.
            Defaults to [7, 3, 3, 3].
        in_channels (int): The num of input channels. Defaults to 3.
        drop_rate (float): Dropout rate after embedding. Defaults to 0.
        drop_path_rate (float): Stochastic depth rate. Defaults to 0.1.
        out_indices (Sequence[int]): Output from which stages.
            Default: ``(3, )``.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Defaults to -1.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        norm_cfg (dict): Config dict for normalization layer for all output
            features. Defaults to ``dict(type='LN')``
        block_cfgs (Sequence[dict] | dict): The extra config of each block.
            Defaults to empty dicts.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.

    Examples:
        >>> from mmpretrain.models import VAN
        >>> import torch
        >>> cfg = dict(arch='tiny')
        >>> model = VAN(**cfg)
        >>> inputs = torch.rand(1, 3, 224, 224)
        >>> outputs = model(inputs)
        >>> for out in outputs:
        >>>     print(out.size())
        (1, 256, 7, 7)
    """
    arch_zoo = {
        **dict.fromkeys(['t', 'tiny'],
                        {'embed_dims': [32, 64, 160, 256],
                         'depths': [3, 3, 5, 2],
                         'ffn_ratios': [8, 8, 4, 4]}),
        **dict.fromkeys(['s', 'small'],
                        {'embed_dims': [64, 128, 320, 512],
                         'depths': [2, 2, 4, 2],
                         'ffn_ratios': [8, 8, 4, 4]}),
        **dict.fromkeys(['b', 'base'],
                        {'embed_dims': [64, 128, 320, 512],
                         'depths': [3, 3, 12, 3],
                         'ffn_ratios': [8, 8, 4, 4]}),
        **dict.fromkeys(['l', 'large'],
                        {'embed_dims': [64, 128, 320, 512],
                         'depths': [3, 5, 27, 3],
                         'ffn_ratios': [8, 8, 4, 4]}),
    }  # yapf: disable

    def __init__(self,
                 arch='tiny',
                 patch_sizes=[7, 3, 3, 3],
                 in_channels=3,
                 drop_rate=0.,
                 drop_path_rate=0.,
                 out_indices=(3, ),
                 frozen_stages=-1,
                 norm_eval=False,
                 norm_cfg=dict(type='LN'),
                 block_cfgs=dict(),
                 init_cfg=None):
        super(VAN, self).__init__(init_cfg=init_cfg)

        if isinstance(arch, str):
            arch = arch.lower()
            assert arch in set(self.arch_zoo), \
                f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
            self.arch_settings = self.arch_zoo[arch]
        else:
            essential_keys = {'embed_dims', 'depths', 'ffn_ratios'}
            assert isinstance(arch, dict) and set(arch) == essential_keys, \
                f'Custom arch needs a dict with keys {essential_keys}'
            self.arch_settings = arch

        self.embed_dims = self.arch_settings['embed_dims']
        self.depths = self.arch_settings['depths']
        self.ffn_ratios = self.arch_settings['ffn_ratios']
        self.num_stages = len(self.depths)
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.norm_eval = norm_eval

        total_depth = sum(self.depths)
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
        ]  # stochastic depth decay rule

        cur_block_idx = 0
        for i, depth in enumerate(self.depths):
            patch_embed = VANPatchEmbed(
                in_channels=in_channels if i == 0 else self.embed_dims[i - 1],
                input_size=None,
                embed_dims=self.embed_dims[i],
                kernel_size=patch_sizes[i],
                stride=patch_sizes[i] // 2 + 1,
                padding=(patch_sizes[i] // 2, patch_sizes[i] // 2),
                norm_cfg=dict(type='BN'))

            blocks = ModuleList([
                VANBlock(
                    embed_dims=self.embed_dims[i],
                    ffn_ratio=self.ffn_ratios[i],
                    drop_rate=drop_rate,
                    drop_path_rate=dpr[cur_block_idx + j],
                    **block_cfgs) for j in range(depth)
            ])
            cur_block_idx += depth
            norm = build_norm_layer(norm_cfg, self.embed_dims[i])[1]

            self.add_module(f'patch_embed{i + 1}', patch_embed)
            self.add_module(f'blocks{i + 1}', blocks)
            self.add_module(f'norm{i + 1}', norm)

    def train(self, mode=True):
        super(VAN, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()

    def _freeze_stages(self):
        for i in range(0, self.frozen_stages + 1):
            # freeze patch embed
            m = getattr(self, f'patch_embed{i + 1}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

            # freeze blocks
            m = getattr(self, f'blocks{i + 1}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

            # freeze norm
            m = getattr(self, f'norm{i + 1}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def forward(self, x):
        outs = []
        for i in range(self.num_stages):
            patch_embed = getattr(self, f'patch_embed{i + 1}')
            blocks = getattr(self, f'blocks{i + 1}')
            norm = getattr(self, f'norm{i + 1}')
            x, hw_shape = patch_embed(x)
            for block in blocks:
                x = block(x)
            x = x.flatten(2).transpose(1, 2)
            x = norm(x)
            x = x.reshape(-1, *hw_shape,
                          block.out_channels).permute(0, 3, 1, 2).contiguous()
            if i in self.out_indices:
                outs.append(x)

        return tuple(outs)