File size: 2,710 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!mkdir ../checkpoints\n",
    "!wget https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth -P ../checkpoints"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": true
    }
   },
   "outputs": [],
   "source": [
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "from mmengine.model.utils import revert_sync_batchnorm\n",
    "from mmseg.apis import init_model, inference_model, show_result_pyplot"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "pycharm": {
     "is_executing": true
    }
   },
   "outputs": [],
   "source": [
    "config_file = '../configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'\n",
    "checkpoint_file = '../checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# build the model from a config file and a checkpoint file\n",
    "model = init_model(config_file, checkpoint_file, device='cpu')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# test a single image\n",
    "img = 'demo.png'\n",
    "if not torch.cuda.is_available():\n",
    "    model = revert_sync_batchnorm(model)\n",
    "result = inference_model(model, img)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# show the results\n",
    "vis_result = show_result_pyplot(model, img, result, show=False)\n",
    "plt.imshow(vis_result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "pt1.13",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.11"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "metadata": {
     "collapsed": false
    },
    "source": []
   }
  },
  "vscode": {
   "interpreter": {
    "hash": "f61d5b8fecdd960739697f6c2860080d7b76a5be5d896cb034bdb275ab3ddda0"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}