File size: 17,436 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import Conv2d, build_activation_layer, build_norm_layer
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import MultiheadAttention
from mmengine.model import BaseModule, ModuleList, Sequential
from mmengine.model.weight_init import (constant_init, normal_init,
                                        trunc_normal_init)

from mmseg.registry import MODELS
from ..utils import PatchEmbed, nchw_to_nlc, nlc_to_nchw


class MixFFN(BaseModule):
    """An implementation of MixFFN of Segformer.

    The differences between MixFFN & FFN:
        1. Use 1X1 Conv to replace Linear layer.
        2. Introduce 3X3 Conv to encode positional information.
    Args:
        embed_dims (int): The feature dimension. Same as
            `MultiheadAttention`. Defaults: 256.
        feedforward_channels (int): The hidden dimension of FFNs.
            Defaults: 1024.
        act_cfg (dict, optional): The activation config for FFNs.
            Default: dict(type='ReLU')
        ffn_drop (float, optional): Probability of an element to be
            zeroed in FFN. Default 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 feedforward_channels,
                 act_cfg=dict(type='GELU'),
                 ffn_drop=0.,
                 dropout_layer=None,
                 init_cfg=None):
        super().__init__(init_cfg)

        self.embed_dims = embed_dims
        self.feedforward_channels = feedforward_channels
        self.act_cfg = act_cfg
        self.activate = build_activation_layer(act_cfg)

        in_channels = embed_dims
        fc1 = Conv2d(
            in_channels=in_channels,
            out_channels=feedforward_channels,
            kernel_size=1,
            stride=1,
            bias=True)
        # 3x3 depth wise conv to provide positional encode information
        pe_conv = Conv2d(
            in_channels=feedforward_channels,
            out_channels=feedforward_channels,
            kernel_size=3,
            stride=1,
            padding=(3 - 1) // 2,
            bias=True,
            groups=feedforward_channels)
        fc2 = Conv2d(
            in_channels=feedforward_channels,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            bias=True)
        drop = nn.Dropout(ffn_drop)
        layers = [fc1, pe_conv, self.activate, drop, fc2, drop]
        self.layers = Sequential(*layers)
        self.dropout_layer = build_dropout(
            dropout_layer) if dropout_layer else torch.nn.Identity()

    def forward(self, x, hw_shape, identity=None):
        out = nlc_to_nchw(x, hw_shape)
        out = self.layers(out)
        out = nchw_to_nlc(out)
        if identity is None:
            identity = x
        return identity + self.dropout_layer(out)


class EfficientMultiheadAttention(MultiheadAttention):
    """An implementation of Efficient Multi-head Attention of Segformer.

    This module is modified from MultiheadAttention which is a module from
    mmcv.cnn.bricks.transformer.
    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        attn_drop (float): A Dropout layer on attn_output_weights.
            Default: 0.0.
        proj_drop (float): A Dropout layer after `nn.MultiheadAttention`.
            Default: 0.0.
        dropout_layer (obj:`ConfigDict`): The dropout_layer used
            when adding the shortcut. Default: None.
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
        batch_first (bool): Key, Query and Value are shape of
            (batch, n, embed_dim)
            or (n, batch, embed_dim). Default: False.
        qkv_bias (bool): enable bias for qkv if True. Default True.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        sr_ratio (int): The ratio of spatial reduction of Efficient Multi-head
            Attention of Segformer. Default: 1.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 attn_drop=0.,
                 proj_drop=0.,
                 dropout_layer=None,
                 init_cfg=None,
                 batch_first=True,
                 qkv_bias=False,
                 norm_cfg=dict(type='LN'),
                 sr_ratio=1):
        super().__init__(
            embed_dims,
            num_heads,
            attn_drop,
            proj_drop,
            dropout_layer=dropout_layer,
            init_cfg=init_cfg,
            batch_first=batch_first,
            bias=qkv_bias)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = Conv2d(
                in_channels=embed_dims,
                out_channels=embed_dims,
                kernel_size=sr_ratio,
                stride=sr_ratio)
            # The ret[0] of build_norm_layer is norm name.
            self.norm = build_norm_layer(norm_cfg, embed_dims)[1]

        # handle the BC-breaking from https://github.com/open-mmlab/mmcv/pull/1418 # noqa
        from mmseg import digit_version, mmcv_version
        if mmcv_version < digit_version('1.3.17'):
            warnings.warn('The legacy version of forward function in'
                          'EfficientMultiheadAttention is deprecated in'
                          'mmcv>=1.3.17 and will no longer support in the'
                          'future. Please upgrade your mmcv.')
            self.forward = self.legacy_forward

    def forward(self, x, hw_shape, identity=None):

        x_q = x
        if self.sr_ratio > 1:
            x_kv = nlc_to_nchw(x, hw_shape)
            x_kv = self.sr(x_kv)
            x_kv = nchw_to_nlc(x_kv)
            x_kv = self.norm(x_kv)
        else:
            x_kv = x

        if identity is None:
            identity = x_q

        # Because the dataflow('key', 'query', 'value') of
        # ``torch.nn.MultiheadAttention`` is (num_query, batch,
        # embed_dims), We should adjust the shape of dataflow from
        # batch_first (batch, num_query, embed_dims) to num_query_first
        # (num_query ,batch, embed_dims), and recover ``attn_output``
        # from num_query_first to batch_first.
        if self.batch_first:
            x_q = x_q.transpose(0, 1)
            x_kv = x_kv.transpose(0, 1)

        out = self.attn(query=x_q, key=x_kv, value=x_kv)[0]

        if self.batch_first:
            out = out.transpose(0, 1)

        return identity + self.dropout_layer(self.proj_drop(out))

    def legacy_forward(self, x, hw_shape, identity=None):
        """multi head attention forward in mmcv version < 1.3.17."""

        x_q = x
        if self.sr_ratio > 1:
            x_kv = nlc_to_nchw(x, hw_shape)
            x_kv = self.sr(x_kv)
            x_kv = nchw_to_nlc(x_kv)
            x_kv = self.norm(x_kv)
        else:
            x_kv = x

        if identity is None:
            identity = x_q

        # `need_weights=True` will let nn.MultiHeadAttention
        # `return attn_output, attn_output_weights.sum(dim=1) / num_heads`
        # The `attn_output_weights.sum(dim=1)` may cause cuda error. So, we set
        # `need_weights=False` to ignore `attn_output_weights.sum(dim=1)`.
        # This issue - `https://github.com/pytorch/pytorch/issues/37583` report
        # the error that large scale tensor sum operation may cause cuda error.
        out = self.attn(query=x_q, key=x_kv, value=x_kv, need_weights=False)[0]

        return identity + self.dropout_layer(self.proj_drop(out))


class TransformerEncoderLayer(BaseModule):
    """Implements one encoder layer in Segformer.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        drop_rate (float): Probability of an element to be zeroed.
            after the feed forward layer. Default 0.0.
        attn_drop_rate (float): The drop out rate for attention layer.
            Default 0.0.
        drop_path_rate (float): stochastic depth rate. Default 0.0.
        qkv_bias (bool): enable bias for qkv if True.
            Default: True.
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN').
        batch_first (bool): Key, Query and Value are shape of
            (batch, n, embed_dim)
            or (n, batch, embed_dim). Default: False.
        init_cfg (dict, optional): Initialization config dict.
            Default:None.
        sr_ratio (int): The ratio of spatial reduction of Efficient Multi-head
            Attention of Segformer. Default: 1.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save
            some memory while slowing down the training speed. Default: False.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 feedforward_channels,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 qkv_bias=True,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN'),
                 batch_first=True,
                 sr_ratio=1,
                 with_cp=False):
        super().__init__()

        # The ret[0] of build_norm_layer is norm name.
        self.norm1 = build_norm_layer(norm_cfg, embed_dims)[1]

        self.attn = EfficientMultiheadAttention(
            embed_dims=embed_dims,
            num_heads=num_heads,
            attn_drop=attn_drop_rate,
            proj_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            batch_first=batch_first,
            qkv_bias=qkv_bias,
            norm_cfg=norm_cfg,
            sr_ratio=sr_ratio)

        # The ret[0] of build_norm_layer is norm name.
        self.norm2 = build_norm_layer(norm_cfg, embed_dims)[1]

        self.ffn = MixFFN(
            embed_dims=embed_dims,
            feedforward_channels=feedforward_channels,
            ffn_drop=drop_rate,
            dropout_layer=dict(type='DropPath', drop_prob=drop_path_rate),
            act_cfg=act_cfg)

        self.with_cp = with_cp

    def forward(self, x, hw_shape):

        def _inner_forward(x):
            x = self.attn(self.norm1(x), hw_shape, identity=x)
            x = self.ffn(self.norm2(x), hw_shape, identity=x)
            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)
        return x


@MODELS.register_module()
class MixVisionTransformer(BaseModule):
    """The backbone of Segformer.

    This backbone is the implementation of `SegFormer: Simple and
    Efficient Design for Semantic Segmentation with
    Transformers <https://arxiv.org/abs/2105.15203>`_.
    Args:
        in_channels (int): Number of input channels. Default: 3.
        embed_dims (int): Embedding dimension. Default: 768.
        num_stags (int): The num of stages. Default: 4.
        num_layers (Sequence[int]): The layer number of each transformer encode
            layer. Default: [3, 4, 6, 3].
        num_heads (Sequence[int]): The attention heads of each transformer
            encode layer. Default: [1, 2, 4, 8].
        patch_sizes (Sequence[int]): The patch_size of each overlapped patch
            embedding. Default: [7, 3, 3, 3].
        strides (Sequence[int]): The stride of each overlapped patch embedding.
            Default: [4, 2, 2, 2].
        sr_ratios (Sequence[int]): The spatial reduction rate of each
            transformer encode layer. Default: [8, 4, 2, 1].
        out_indices (Sequence[int] | int): Output from which stages.
            Default: (0, 1, 2, 3).
        mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
            Default: 4.
        qkv_bias (bool): Enable bias for qkv if True. Default: True.
        drop_rate (float): Probability of an element to be zeroed.
            Default 0.0
        attn_drop_rate (float): The drop out rate for attention layer.
            Default 0.0
        drop_path_rate (float): stochastic depth rate. Default 0.0
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN')
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        pretrained (str, optional): model pretrained path. Default: None.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save
            some memory while slowing down the training speed. Default: False.
    """

    def __init__(self,
                 in_channels=3,
                 embed_dims=64,
                 num_stages=4,
                 num_layers=[3, 4, 6, 3],
                 num_heads=[1, 2, 4, 8],
                 patch_sizes=[7, 3, 3, 3],
                 strides=[4, 2, 2, 2],
                 sr_ratios=[8, 4, 2, 1],
                 out_indices=(0, 1, 2, 3),
                 mlp_ratio=4,
                 qkv_bias=True,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 act_cfg=dict(type='GELU'),
                 norm_cfg=dict(type='LN', eps=1e-6),
                 pretrained=None,
                 init_cfg=None,
                 with_cp=False):
        super().__init__(init_cfg=init_cfg)

        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be set at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is not None:
            raise TypeError('pretrained must be a str or None')

        self.embed_dims = embed_dims
        self.num_stages = num_stages
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.patch_sizes = patch_sizes
        self.strides = strides
        self.sr_ratios = sr_ratios
        self.with_cp = with_cp
        assert num_stages == len(num_layers) == len(num_heads) \
               == len(patch_sizes) == len(strides) == len(sr_ratios)

        self.out_indices = out_indices
        assert max(out_indices) < self.num_stages

        # transformer encoder
        dpr = [
            x.item()
            for x in torch.linspace(0, drop_path_rate, sum(num_layers))
        ]  # stochastic num_layer decay rule

        cur = 0
        self.layers = ModuleList()
        for i, num_layer in enumerate(num_layers):
            embed_dims_i = embed_dims * num_heads[i]
            patch_embed = PatchEmbed(
                in_channels=in_channels,
                embed_dims=embed_dims_i,
                kernel_size=patch_sizes[i],
                stride=strides[i],
                padding=patch_sizes[i] // 2,
                norm_cfg=norm_cfg)
            layer = ModuleList([
                TransformerEncoderLayer(
                    embed_dims=embed_dims_i,
                    num_heads=num_heads[i],
                    feedforward_channels=mlp_ratio * embed_dims_i,
                    drop_rate=drop_rate,
                    attn_drop_rate=attn_drop_rate,
                    drop_path_rate=dpr[cur + idx],
                    qkv_bias=qkv_bias,
                    act_cfg=act_cfg,
                    norm_cfg=norm_cfg,
                    with_cp=with_cp,
                    sr_ratio=sr_ratios[i]) for idx in range(num_layer)
            ])
            in_channels = embed_dims_i
            # The ret[0] of build_norm_layer is norm name.
            norm = build_norm_layer(norm_cfg, embed_dims_i)[1]
            self.layers.append(ModuleList([patch_embed, layer, norm]))
            cur += num_layer

    def init_weights(self):
        if self.init_cfg is None:
            for m in self.modules():
                if isinstance(m, nn.Linear):
                    trunc_normal_init(m, std=.02, bias=0.)
                elif isinstance(m, nn.LayerNorm):
                    constant_init(m, val=1.0, bias=0.)
                elif isinstance(m, nn.Conv2d):
                    fan_out = m.kernel_size[0] * m.kernel_size[
                        1] * m.out_channels
                    fan_out //= m.groups
                    normal_init(
                        m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0)
        else:
            super().init_weights()

    def forward(self, x):
        outs = []

        for i, layer in enumerate(self.layers):
            x, hw_shape = layer[0](x)
            for block in layer[1]:
                x = block(x, hw_shape)
            x = layer[2](x)
            x = nlc_to_nchw(x, hw_shape)
            if i in self.out_indices:
                outs.append(x)

        return outs