Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 17,268 Bytes
d78d0d1 89be9f9 5fc4e72 9ccfeb4 cf79aee 89be9f9 1ef81e0 eac7d3f 89be9f9 7233b48 9ccfeb4 7932f13 9ccfeb4 7932f13 9ccfeb4 7233b48 d5e0e34 7233b48 a6ef2fa 7233b48 f311bf4 7233b48 5b03846 42a3866 5b03846 7233b48 89be9f9 e38af10 a2591b6 5b03846 d78d0d1 9ccfeb4 d78d0d1 9ccfeb4 d78d0d1 9ccfeb4 5b03846 d78d0d1 eac7d3f 34274e5 eac7d3f 34274e5 eac7d3f 457a981 34274e5 eac7d3f f311bf4 eac7d3f 1e16292 eac7d3f 457a981 eac7d3f 457a981 89be9f9 0590665 0b0f412 0590665 d5e0e34 a2e6f51 d5e0e34 e78fda7 da98162 d5e0e34 da98162 e78fda7 da98162 e78fda7 da98162 e78fda7 da98162 e78fda7 da98162 cf79aee 2e86d75 47e7aeb 9ccfeb4 47e7aeb 9ccfeb4 59874d6 9ccfeb4 12459b9 699c100 d5e0e34 9ccfeb4 42a3866 9ccfeb4 814d067 9ccfeb4 79e1e8e 2e86d75 9ccfeb4 814d067 9ccfeb4 79e1e8e 9ccfeb4 42a3866 f230aaf 42a3866 2e86d75 de06d10 d78d0d1 1ef81e0 79e1e8e 1ef81e0 f57c1f6 d78d0d1 1ef81e0 f311bf4 1ef81e0 f311bf4 9ccfeb4 1ef81e0 73c24bb f311bf4 7932f13 f311bf4 7932f13 546d4e5 f311bf4 546d4e5 f311bf4 546d4e5 ccfd7e1 546d4e5 f311bf4 1ef81e0 79e1e8e 2e86d75 1ef81e0 f57c1f6 1ef81e0 de06d10 350befe de06d10 7932f13 de06d10 546d4e5 7932f13 de06d10 12459b9 699c100 d5e0e34 de06d10 42a3866 de06d10 2e86d75 814d067 de06d10 9ccfeb4 2e86d75 1ef81e0 9ccfeb4 42a3866 9ccfeb4 5b03846 42a3866 9ccfeb4 5b03846 9ccfeb4 42a3866 5b03846 42a3866 9ccfeb4 42a3866 ab4b6b4 99a0d01 6e3a126 ab4b6b4 21a4f44 6e3a126 4e66e6b 42a3866 4e66e6b f57c1f6 79e1e8e a2591b6 f57c1f6 ecb653b 42a3866 ecb653b 9ccfeb4 ecb653b 42a3866 ecb653b 42a3866 ecb653b f311bf4 ecb653b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import argparse
import os
import gzip
import pickle
import numpy as np
import pandas as pd
import tensorflow as tf
from Bio import SeqIO
# column names
ID_COL = 'Transcript ID'
SEQ_COL = 'Transcript Sequence'
TARGET_COL = 'Target Sequence'
GUIDE_COL = 'Guide Sequence'
MM_COL = 'Number of Mismatches'
SCORE_COL = 'Guide Score'
# nucleotide tokens
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T', 'N'], [0, 1, 2, 3, 255]))
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
# model hyper-parameters
GUIDE_LEN = 23
CONTEXT_5P = 3
CONTEXT_3P = 0
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
UNIT_INTERVAL_MAP = 'sigmoid'
# reference transcript files
REFERENCE_TRANSCRIPTS = (
'gencode_v47_basic_protein_coding_transcripts.fa.gz',
'gencode_v47_basic_lncRNA_transcripts.fa.gz'
)
# application configuration
BATCH_SIZE_COMPUTE = 500
BATCH_SIZE_SCAN = 20
BATCH_SIZE_TRANSCRIPTS = 50
NUM_TOP_GUIDES = 10
NUM_MISMATCHES = 3
RUN_MODES = dict(
all='All on-target guides per transcript',
top_guides='Top {:d} guides per transcript'.format(NUM_TOP_GUIDES),
titration='Top {:d} guides per transcript & their titration candidates'.format(NUM_TOP_GUIDES)
)
# configure GPUs
for gpu in tf.config.list_physical_devices('GPU'):
tf.config.experimental.set_memory_growth(gpu, enable=True)
if len(tf.config.list_physical_devices('GPU')) > 0:
tf.config.experimental.set_visible_devices(tf.config.list_physical_devices('GPU')[0], 'GPU')
def load_transcripts(fasta_files: list, enforce_unique_ids: bool = True):
# load all transcripts from fasta files into a DataFrame
transcripts = pd.DataFrame()
for file in fasta_files:
try:
if os.path.splitext(file)[1] == '.gz':
with gzip.open(file, 'rt') as f:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(f, 'fasta')], columns=[ID_COL, SEQ_COL])
else:
df = pd.DataFrame([(t.id, str(t.seq)) for t in SeqIO.parse(file, 'fasta')], columns=[ID_COL, SEQ_COL])
except Exception as e:
print(e, 'while loading', file)
continue
transcripts = pd.concat([transcripts, df])
# set index
transcripts[ID_COL] = transcripts[ID_COL].apply(lambda s: s.split('|')[0])
transcripts.set_index(ID_COL, inplace=True)
if enforce_unique_ids:
assert not transcripts.index.has_duplicates, "duplicate transcript ID's detected in fasta file"
return transcripts
def sequence_complement(sequence: list):
return [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in sequence]
def one_hot_encode_sequence(sequence: list, add_context_padding: bool = False):
# stack list of sequences into a tensor
sequence = tf.ragged.stack([tf.constant(list(seq)) for seq in sequence], axis=0)
# tokenize sequence
nucleotide_table = tf.lookup.StaticVocabularyTable(
initializer=tf.lookup.KeyValueTensorInitializer(
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
num_oov_buckets=1)
sequence = tf.RaggedTensor.from_row_splits(values=nucleotide_table.lookup(sequence.values),
row_splits=sequence.row_splits).to_tensor(255)
# add context padding if requested
if add_context_padding:
pad_5p = 255 * tf.ones([sequence.shape[0], CONTEXT_5P], dtype=sequence.dtype)
pad_3p = 255 * tf.ones([sequence.shape[0], CONTEXT_3P], dtype=sequence.dtype)
sequence = tf.concat([pad_5p, sequence, pad_3p], axis=1)
# one-hot encode
sequence = tf.one_hot(sequence, depth=4, dtype=tf.float16)
return sequence
def process_data(transcript_seq: str):
# convert to upper case
transcript_seq = transcript_seq.upper()
# get all target sites
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN + 1)]
# prepare guide sequences
guide_seq = sequence_complement([seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq])
# model inputs
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(target_seq, add_context_padding=False), [len(target_seq), -1]),
tf.reshape(one_hot_encode_sequence(guide_seq, add_context_padding=True), [len(guide_seq), -1]),
], axis=-1)
return target_seq, guide_seq, model_inputs
def calibrate_predictions(predictions: np.array, num_mismatches: np.array, params: pd.DataFrame = None):
if params is None:
params = pd.read_pickle('calibration_params.pkl')
correction = np.squeeze(params.set_index('num_mismatches').loc[num_mismatches, 'slope'].to_numpy())
return correction * predictions
def score_predictions(predictions: np.array, params: pd.DataFrame = None):
if params is None:
params = pd.read_pickle('scoring_params.pkl')
if UNIT_INTERVAL_MAP == 'sigmoid':
params = params.iloc[0]
return 1 - 1 / (1 + np.exp(params['a'] * predictions + params['b']))
elif UNIT_INTERVAL_MAP == 'min-max':
return 1 - (predictions - params['a']) / (params['b'] - params['a'])
elif UNIT_INTERVAL_MAP == 'exp-lin-exp':
# regime indices
active_saturation = predictions < params['a']
linear_regime = (params['a'] <= predictions) & (predictions <= params['c'])
inactive_saturation = params['c'] < predictions
# linear regime
slope = (params['d'] - params['b']) / (params['c'] - params['a'])
intercept = -params['a'] * slope + params['b']
predictions[linear_regime] = slope * predictions[linear_regime] + intercept
# active saturation regime
alpha = slope / params['b']
beta = alpha * params['a'] - np.log(params['b'])
predictions[active_saturation] = np.exp(alpha * predictions[active_saturation] - beta)
# inactive saturation regime
alpha = slope / (1 - params['d'])
beta = -alpha * params['c'] - np.log(1 - params['d'])
predictions[inactive_saturation] = 1 - np.exp(-alpha * predictions[inactive_saturation] - beta)
return 1 - predictions
else:
raise NotImplementedError
def get_on_target_predictions(transcripts: pd.DataFrame, model: tf.keras.Model, status_update_fn=None):
# loop over transcripts
predictions = pd.DataFrame()
for i, (index, row) in enumerate(transcripts.iterrows()):
# parse transcript sequence
target_seq, guide_seq, model_inputs = process_data(row[SEQ_COL])
# get predictions
lfc_estimate = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)[:, 0]
lfc_estimate = calibrate_predictions(lfc_estimate, num_mismatches=np.zeros_like(lfc_estimate))
scores = score_predictions(lfc_estimate)
predictions = pd.concat([predictions, pd.DataFrame({
ID_COL: [index] * len(scores),
TARGET_COL: target_seq,
GUIDE_COL: guide_seq,
SCORE_COL: scores})])
# progress update
percent_complete = 100 * min((i + 1) / len(transcripts), 1)
update_text = 'Evaluating on-target guides for each transcript: {:.2f}%'.format(percent_complete)
print('\r' + update_text, end='')
if status_update_fn is not None:
status_update_fn(update_text, percent_complete)
print('')
return predictions
def top_guides_per_transcript(predictions: pd.DataFrame):
# select and sort top guides for each transcript
top_guides = pd.DataFrame()
for transcript in predictions[ID_COL].unique():
df = predictions.loc[predictions[ID_COL] == transcript]
df = df.sort_values(SCORE_COL, ascending=False).reset_index(drop=True).iloc[:NUM_TOP_GUIDES]
top_guides = pd.concat([top_guides, df])
return top_guides.reset_index(drop=True)
def get_titration_candidates(top_guide_predictions: pd.DataFrame):
# generate a table of all titration candidates
titration_candidates = pd.DataFrame()
for _, row in top_guide_predictions.iterrows():
for i in range(len(row[GUIDE_COL])):
nt = row[GUIDE_COL][i]
for mutation in set(NUCLEOTIDE_TOKENS.keys()) - {nt, 'N'}:
sm_guide = list(row[GUIDE_COL])
sm_guide[i] = mutation
sm_guide = ''.join(sm_guide)
assert row[GUIDE_COL] != sm_guide
titration_candidates = pd.concat([titration_candidates, pd.DataFrame({
ID_COL: [row[ID_COL]],
TARGET_COL: [row[TARGET_COL]],
GUIDE_COL: [sm_guide],
MM_COL: [1]
})])
return titration_candidates
def find_off_targets(top_guides: pd.DataFrame, status_update_fn=None):
# load reference transcripts
reference_transcripts = load_transcripts([os.path.join('transcripts', f) for f in REFERENCE_TRANSCRIPTS])
# one-hot encode guides to form a filter
guide_filter = one_hot_encode_sequence(sequence_complement(top_guides[GUIDE_COL]), add_context_padding=False)
guide_filter = tf.transpose(guide_filter, [1, 2, 0])
# loop over transcripts in batches
i = 0
off_targets = pd.DataFrame()
while i < len(reference_transcripts):
# select batch
df_batch = reference_transcripts.iloc[i:min(i + BATCH_SIZE_SCAN, len(reference_transcripts))]
i += BATCH_SIZE_SCAN
# find locations of off-targets
transcripts = one_hot_encode_sequence(df_batch[SEQ_COL].values.tolist(), add_context_padding=False)
num_mismatches = GUIDE_LEN - tf.nn.conv1d(transcripts, guide_filter, stride=1, padding='SAME')
loc_off_targets = tf.where(tf.round(num_mismatches) <= NUM_MISMATCHES).numpy()
# off-targets discovered
if len(loc_off_targets) > 0:
# log off-targets
dict_off_targets = pd.DataFrame({
'On-target ' + ID_COL: top_guides.iloc[loc_off_targets[:, 2]][ID_COL],
GUIDE_COL: top_guides.iloc[loc_off_targets[:, 2]][GUIDE_COL],
'Off-target ' + ID_COL: df_batch.index.values[loc_off_targets[:, 0]],
'Guide Midpoint': loc_off_targets[:, 1],
SEQ_COL: df_batch[SEQ_COL].values[loc_off_targets[:, 0]],
MM_COL: tf.gather_nd(num_mismatches, loc_off_targets).numpy().astype(int),
}).to_dict('records')
# trim transcripts to targets
for row in dict_off_targets:
start_location = row['Guide Midpoint'] - (GUIDE_LEN // 2)
del row['Guide Midpoint']
target = row[SEQ_COL]
del row[SEQ_COL]
if start_location < CONTEXT_5P:
target = target[0:GUIDE_LEN + CONTEXT_3P]
target = 'N' * (TARGET_LEN - len(target)) + target
elif start_location + GUIDE_LEN + CONTEXT_3P > len(target):
target = target[start_location - CONTEXT_5P:]
target = target + 'N' * (TARGET_LEN - len(target))
else:
target = target[start_location - CONTEXT_5P:start_location + GUIDE_LEN + CONTEXT_3P]
if row[MM_COL] == 0 and 'N' not in target:
assert row[GUIDE_COL] == sequence_complement([target[CONTEXT_5P:TARGET_LEN - CONTEXT_3P]])[0]
row[TARGET_COL] = target
# append new off-targets
off_targets = pd.concat([off_targets, pd.DataFrame(dict_off_targets)])
# progress update
percent_complete = 100 * min((i + 1) / len(reference_transcripts), 1)
update_text = 'Scanning for off-targets: {:.2f}%'.format(percent_complete)
print('\r' + update_text, end='')
if status_update_fn is not None:
status_update_fn(update_text, percent_complete)
print('')
return off_targets
def predict_off_target(off_targets: pd.DataFrame, model: tf.keras.Model):
if len(off_targets) == 0:
return pd.DataFrame()
# compute off-target predictions
model_inputs = tf.concat([
tf.reshape(one_hot_encode_sequence(off_targets[TARGET_COL], add_context_padding=False), [len(off_targets), -1]),
tf.reshape(one_hot_encode_sequence(off_targets[GUIDE_COL], add_context_padding=True), [len(off_targets), -1]),
], axis=-1)
lfc_estimate = model.predict(model_inputs, batch_size=BATCH_SIZE_COMPUTE, verbose=False)[:, 0]
lfc_estimate = calibrate_predictions(lfc_estimate, off_targets['Number of Mismatches'].to_numpy())
off_targets[SCORE_COL] = score_predictions(lfc_estimate)
return off_targets.reset_index(drop=True)
def tiger_exhibit(transcripts: pd.DataFrame, mode: str, check_off_targets: bool, status_update_fn=None):
# load model
if os.path.exists('model'):
tiger = tf.keras.models.load_model('model')
else:
print('no saved model!')
exit()
# evaluate all on-target guides per transcript
on_target_predictions = get_on_target_predictions(transcripts, tiger, status_update_fn)
# initialize other outputs
titration_predictions = off_target_predictions = None
if mode == 'all' and not check_off_targets:
off_target_candidates = None
elif mode == 'top_guides':
on_target_predictions = top_guides_per_transcript(on_target_predictions)
off_target_candidates = on_target_predictions
elif mode == 'titration':
on_target_predictions = top_guides_per_transcript(on_target_predictions)
titration_candidates = get_titration_candidates(on_target_predictions)
titration_predictions = predict_off_target(titration_candidates, model=tiger)
off_target_candidates = pd.concat([on_target_predictions, titration_predictions])
else:
raise NotImplementedError
# check off-target effects for top guides
if check_off_targets and off_target_candidates is not None:
off_target_candidates = find_off_targets(off_target_candidates, status_update_fn)
off_target_predictions = predict_off_target(off_target_candidates, model=tiger)
if len(off_target_predictions) > 0:
off_target_predictions = off_target_predictions.sort_values(SCORE_COL, ascending=False)
off_target_predictions = off_target_predictions.reset_index(drop=True)
# finalize tables
for df in [on_target_predictions, titration_predictions, off_target_predictions]:
if df is not None and len(df) > 0:
for col in df.columns:
if ID_COL in col and set(df[col].unique()) == {'ManualEntry'}:
del df[col]
df[GUIDE_COL] = df[GUIDE_COL].apply(lambda s: s[::-1]) # reverse guide sequences
df[TARGET_COL] = df[TARGET_COL].apply(lambda seq: seq[CONTEXT_5P:len(seq) - CONTEXT_3P]) # remove context
return on_target_predictions, titration_predictions, off_target_predictions
if __name__ == '__main__':
# common arguments
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='titration')
parser.add_argument('--check_off_targets', action='store_true', default=False)
parser.add_argument('--fasta_path', type=str, default=None)
args = parser.parse_args()
# check for any existing results
if os.path.exists('on_target.csv') or os.path.exists('titration.csv') or os.path.exists('off_target.csv'):
raise FileExistsError('please rename or delete existing results')
# load transcripts from a directory of fasta files
if args.fasta_path is not None and os.path.exists(args.fasta_path):
df_transcripts = load_transcripts([os.path.join(args.fasta_path, f) for f in os.listdir(args.fasta_path)])
# otherwise consider simple test case with first 50 nucleotides from EIF3B-003's CDS
else:
df_transcripts = pd.DataFrame({
ID_COL: ['ManualEntry'],
SEQ_COL: ['ATGCAGGACGCGGAGAACGTGGCGGTGCCCGAGGCGGCCGAGGAGCGCGC']})
df_transcripts.set_index(ID_COL, inplace=True)
# process in batches
batch = 0
num_batches = len(df_transcripts) // BATCH_SIZE_TRANSCRIPTS
num_batches += (len(df_transcripts) % BATCH_SIZE_TRANSCRIPTS > 0)
for idx in range(0, len(df_transcripts), BATCH_SIZE_TRANSCRIPTS):
batch += 1
print('Batch {:d} of {:d}'.format(batch, num_batches))
# run batch
idx_stop = min(idx + BATCH_SIZE_TRANSCRIPTS, len(df_transcripts))
df_on_target, df_titration, df_off_target = tiger_exhibit(
transcripts=df_transcripts[idx:idx_stop],
mode=args.mode,
check_off_targets=args.check_off_targets
)
# save batch results
df_on_target.to_csv('on_target.csv', header=batch == 1, index=False, mode='a')
if df_titration is not None:
df_titration.to_csv('titration.csv', header=batch == 1, index=False, mode='a')
if df_off_target is not None:
df_off_target.to_csv('off_target.csv', header=batch == 1, index=False, mode='a')
# clear session to prevent memory blow up
tf.keras.backend.clear_session()
|