Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Andrew Stirn
commited on
Commit
·
457a981
1
Parent(s):
a1b3810
off-target model with guide sequence utilization
Browse files- model/fingerprint.pb +2 -2
- model/keras_metadata.pb +2 -2
- model/saved_model.pb +2 -2
- model/variables/variables.data-00000-of-00001 +2 -2
- model/variables/variables.index +2 -2
- tiger.py +21 -7
model/fingerprint.pb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52d2b657d4a87fe128786cd8435a2f4c8d4e5d08571b12ff8911f100c0ee043b
|
3 |
+
size 54
|
model/keras_metadata.pb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e89af418a7cbb78442c6a65f20f2817352361b826189c4aad0de8a531aa5a8d
|
3 |
+
size 13629
|
model/saved_model.pb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f91692a0db6169ce09c321d292a7622468ea1b46c2f2293d97e43aa7c9cb9719
|
3 |
+
size 241848
|
model/variables/variables.data-00000-of-00001
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff1487ef1c93444ea6eeb6b023a0f4095aa0af473d98022d8c6e8b9e339d0add
|
3 |
+
size 948103
|
model/variables/variables.index
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f00477f5d3801ba7e566cfcb16d16970ee88a94b716db4232e30ac27115bbfbd
|
3 |
+
size 877
|
tiger.py
CHANGED
@@ -7,6 +7,7 @@ CONTEXT_5P = 3
|
|
7 |
CONTEXT_3P = 0
|
8 |
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
|
9 |
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T'], [0, 1, 2, 3]))
|
|
|
10 |
|
11 |
|
12 |
def process_data(transcript_seq: str):
|
@@ -17,16 +18,29 @@ def process_data(transcript_seq: str):
|
|
17 |
# get all target sites
|
18 |
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN)]
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
21 |
nucleotide_table = tf.lookup.StaticVocabularyTable(
|
22 |
initializer=tf.lookup.KeyValueTensorInitializer(
|
23 |
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
|
24 |
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
|
25 |
num_oov_buckets=1)
|
26 |
target_tokens = nucleotide_table.lookup(tf.stack([list(t) for t in target_seq], axis=0))
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
return target_seq,
|
30 |
|
31 |
|
32 |
def tiger_predict(transcript_seq: str):
|
@@ -38,12 +52,12 @@ def tiger_predict(transcript_seq: str):
|
|
38 |
print('no saved model!')
|
39 |
exit()
|
40 |
|
41 |
-
# parse transcript sequence
|
42 |
-
target_seq,
|
43 |
|
44 |
# get predictions
|
45 |
-
normalized_lfc = tiger.predict_step(
|
46 |
-
predictions = pd.DataFrame({'
|
47 |
|
48 |
return predictions
|
49 |
|
|
|
7 |
CONTEXT_3P = 0
|
8 |
TARGET_LEN = CONTEXT_5P + GUIDE_LEN + CONTEXT_3P
|
9 |
NUCLEOTIDE_TOKENS = dict(zip(['A', 'C', 'G', 'T'], [0, 1, 2, 3]))
|
10 |
+
NUCLEOTIDE_COMPLEMENT = dict(zip(['A', 'C', 'G', 'T'], ['T', 'G', 'C', 'A']))
|
11 |
|
12 |
|
13 |
def process_data(transcript_seq: str):
|
|
|
18 |
# get all target sites
|
19 |
target_seq = [transcript_seq[i: i + TARGET_LEN] for i in range(len(transcript_seq) - TARGET_LEN)]
|
20 |
|
21 |
+
# prepare guide sequences
|
22 |
+
guide_seq = [seq[CONTEXT_5P:len(seq) - CONTEXT_3P] for seq in target_seq]
|
23 |
+
guide_seq = [''.join([NUCLEOTIDE_COMPLEMENT[nt] for nt in list(seq)]) for seq in guide_seq]
|
24 |
+
|
25 |
+
# tokenize sequence
|
26 |
nucleotide_table = tf.lookup.StaticVocabularyTable(
|
27 |
initializer=tf.lookup.KeyValueTensorInitializer(
|
28 |
keys=tf.constant(list(NUCLEOTIDE_TOKENS.keys()), dtype=tf.string),
|
29 |
values=tf.constant(list(NUCLEOTIDE_TOKENS.values()), dtype=tf.int64)),
|
30 |
num_oov_buckets=1)
|
31 |
target_tokens = nucleotide_table.lookup(tf.stack([list(t) for t in target_seq], axis=0))
|
32 |
+
guide_tokens = nucleotide_table.lookup(tf.stack([list(g) for g in guide_seq], axis=0))
|
33 |
+
pad_5p = 255 * tf.ones([guide_tokens.shape[0], CONTEXT_5P], dtype=guide_tokens.dtype)
|
34 |
+
pad_3p = 255 * tf.ones([guide_tokens.shape[0], CONTEXT_3P], dtype=guide_tokens.dtype)
|
35 |
+
guide_tokens = tf.concat([pad_5p, guide_tokens, pad_3p], axis=1)
|
36 |
+
|
37 |
+
# model inputs
|
38 |
+
model_inputs = tf.concat([
|
39 |
+
tf.reshape(tf.one_hot(target_tokens, depth=4), [len(target_seq), -1]),
|
40 |
+
tf.reshape(tf.one_hot(guide_tokens, depth=4), [len(guide_tokens), -1]),
|
41 |
+
], axis=-1)
|
42 |
|
43 |
+
return target_seq, guide_seq, model_inputs
|
44 |
|
45 |
|
46 |
def tiger_predict(transcript_seq: str):
|
|
|
52 |
print('no saved model!')
|
53 |
exit()
|
54 |
|
55 |
+
# parse transcript sequence
|
56 |
+
target_seq, guide_seq, model_inputs = process_data(transcript_seq)
|
57 |
|
58 |
# get predictions
|
59 |
+
normalized_lfc = tiger.predict_step(model_inputs)
|
60 |
+
predictions = pd.DataFrame({'Guide': guide_seq, 'Normalized LFC': tf.squeeze(normalized_lfc).numpy()})
|
61 |
|
62 |
return predictions
|
63 |
|