Spaces:
Runtime error
Runtime error
File size: 12,788 Bytes
58fbdee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import argparse
import os
import shutil
import subprocess
import sys
import tempfile
from functools import partial
import gradio as gr
import librosa
import numpy as np
import soundfile
from edgetts.tts_voices import SUPPORTED_LANGUAGES
from inference.infer_tool import Svc
MAXOCTAVE = 2
TEMPDIR = None
def generate_tempfile(suffix=None, prefix=None):
global TEMPDIR
_, filepath = tempfile.mkstemp(suffix=suffix, prefix=prefix, dir=TEMPDIR)
return filepath
def find_sovits_model(dirpath):
for filename in os.listdir(dirpath):
if filename.endswith(".pth"):
return os.path.join(dirpath, filename)
return None
def find_diffusion_model(dirpath):
for filename in os.listdir(dirpath):
if filename.startswith("model") and filename.endswith(".pt"):
return os.path.join(dirpath, filename)
return None
def find_static_file(dirpath, filename):
filepath = os.path.join(dirpath, filename)
return filepath if os.path.exists(filepath) else None
def model_fn(modeldir, model, leakctrl, diffonly, enhancer):
if model is not None:
model.unload_model()
# locate trained models
sovits_model_path = find_sovits_model(modeldir)
sovits_config_path = find_static_file(modeldir, "config.json")
diffusion_model_path = find_diffusion_model(modeldir)
diffusion_config_path = find_static_file(modeldir, "config.yaml")
kmeans_model_path = find_static_file(modeldir, "kmeans_10000.pt")
feature_index_path = find_static_file(modeldir, "feature_and_index.pkl")
feature_retrieval = leakctrl == "Feature retrieval"
cluster_model_path = feature_index_path if feature_retrieval else kmeans_model_path
model = Svc(
sovits_model_path,
sovits_config_path,
cluster_model_path=cluster_model_path,
feature_retrieval=feature_retrieval,
diffusion_model_path=diffusion_model_path,
diffusion_config_path=diffusion_config_path,
shallow_diffusion=True,
only_diffusion=diffonly,
nsf_hifigan_enhance=enhancer,
)
speakers = list(model.spk2id.keys())
return (
model,
"Reload Model",
f"Successfully loaded model into device {str(model.dev)}",
gr.Dropdown(choices=speakers, value=speakers[0]),
)
def preset_fn(preset):
if preset == "Singing":
f0_predictor = "none"
leakctrl_ratio = 0.5
else:
f0_predictor = "rmvpe"
leakctrl_ratio = 0
"""
f0_predictor, pitch_shift, leakctrl_ratio, diff_steps, noise_scale,
silent_padding, db_threshold, auto_clip, clip_overlap, cross_fade,
adaptive_key, crepe_f0, loudness_ratio, reencode_audio,
"""
return (
f0_predictor, 0, leakctrl_ratio, 100, 0.4,
0.5, -40, 0, 0, 0.75,
0, 0.05, 0, False,
)
def tts_fn(text, gender, lang, rate, volume):
def to_percent(x):
return f"+{int(x * 100)}%" if x >= 0 else f"{int(x * 100)}%"
rate = to_percent(rate)
volume = to_percent(volume)
outfile = generate_tempfile(suffix=".wav")
subprocess.run([sys.executable, "edgetts/tts.py", text, lang, rate, volume, gender, outfile])
result, orig_sr = librosa.load(outfile)
os.remove(outfile)
target_sr = 44100
resampled = librosa.resample(result, orig_sr=orig_sr, target_sr=target_sr)
return target_sr, resampled
def inference_fn(
model, speaker, input_audio,
f0_predictor, pitch_shift, leakctrl_ratio, diff_steps, noise_scale,
silent_padding, db_threshold, auto_clip, clip_overlap, cross_fade,
adaptive_key, crepe_f0, loudness_ratio, reencode_audio,
):
if model is None:
return "Error: please load model first", None
if input_audio is None:
return "Error: please upload an audio", None
sample_rate, audio = input_audio
if np.issubdtype(audio.dtype, np.integer):
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
infile = generate_tempfile(suffix=".wav")
soundfile.write(infile, audio, sample_rate, format="wav")
result = model.slice_inference(
infile,
speaker,
pitch_shift,
db_threshold,
leakctrl_ratio,
f0_predictor != "none",
noise_scale,
pad_seconds=silent_padding,
clip_seconds=auto_clip,
lg_num=clip_overlap,
lgr_num=cross_fade,
f0_predictor="crepe" if f0_predictor == "none" else f0_predictor,
enhancer_adaptive_key=adaptive_key,
cr_threshold=crepe_f0,
k_step=diff_steps,
use_spk_mix=False,
second_encoding=reencode_audio,
loudness_envelope_adjustment=loudness_ratio,
)
model.clear_empty()
os.remove(infile)
# gr.Audio force normalize the audio if supplied as a numpy array
# we must write to a temporary file and return the filepath here
prefix = f"{speaker}_{f0_predictor}_pitch{pitch_shift}_timbre{leakctrl_ratio}_diff{diff_steps}_"
outfile = generate_tempfile(suffix=".wav", prefix=prefix)
soundfile.write(outfile, result, model.target_sample, format="wav")
return "Success", outfile
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="so-vits-svc WebUI")
parser.add_argument("-m", "--model", default="./trained")
parser.add_argument("-t", "--temp", default="./workspace")
args = parser.parse_args()
shutil.rmtree(args.temp, ignore_errors=True)
os.makedirs(args.temp, exist_ok=True)
TEMPDIR = args.temp
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
title = gr.Markdown(value="""# AI Sora Singing Voice Conversion""")
with gr.Column():
with gr.Accordion(label="About", open=False):
about = gr.Markdown(value="""Space by [KasugaiSakura](https://huggingface.co/KasugaiSakura)<br/>Based on a modified version of [so-vits-svc](https://github.com/meimisaki/so-vits-svc/tree/4.1-Stable)<br/>Voice copyright belongs to [CUFFS/Sphere](https://www.cuffs.co.jp/)""")
with gr.Row():
with gr.Column():
with gr.Accordion(label="Model setup", open=True):
leakctrl = gr.Radio(
label="Timbre leakage control method",
choices=["Feature retrieval", "K-means clustering"],
value="Feature retrieval",
)
diffonly = gr.Checkbox(label="Diffusion only mode")
enhancer = gr.Checkbox(label="NSF-HiFiGAN enhancer (not recommended)")
modelptr = gr.State(None)
modelbtn = gr.Button(value="Load Model", variant="primary")
modelmsg = gr.Textbox(label="Model info")
speaker = gr.Dropdown(label="Speaker", interactive=True)
with gr.Accordion(label="Text to speech", open=False):
tts_text = gr.Textbox(label="Text", placeholder="Enter text here")
tts_gender = gr.Radio(label="Gender", choices=["Male","Female"], value="Male")
tts_lang = gr.Dropdown(label="Language", choices=SUPPORTED_LANGUAGES, value="Auto")
tts_rate = gr.Slider(
label="Relative speed",
minimum=-1, maximum=3, value=0, step=0.1
)
tts_volume = gr.Slider(
label="Relative volume",
minimum=-1, maximum=1.5, value=0, step=0.1
)
tts_btn = gr.Button(value="Synthesize")
with gr.Accordion(label="Voice conversion", open=True):
input_audio = gr.Audio(label="Input audio", type="numpy")
inference_btn = gr.Button(value="Inference")
output_msg = gr.Textbox(label="Output message")
output_audio = gr.Audio(label="Output audio", type="filepath")
with gr.Column():
with gr.Accordion(label="Inference options", open=True):
inference_preset = gr.Radio(
label="Preset",
choices=["Singing", "Speaking"],
value="Singing",
interactive=True,
)
f0_predictor = gr.Dropdown(
label="F0 predictor",
choices=["none", "crepe", "dio", "harvest", "pm", "rmvpe"],
value="none",
)
pitch_shift = gr.Slider(
label="Pitch shift (in semitones, 12 in an octave)",
minimum=-12*MAXOCTAVE, maximum=12*MAXOCTAVE, value=0, step=1,
)
leakctrl_ratio = gr.Slider(
label="Timbre leakage control mix ratio (set to 0 to disable it)",
minimum=0, maximum=1, value=0.5, step=0.1,
)
diff_steps = gr.Slider(
label="Shallow diffusion steps",
minimum=0, maximum=1000, value=100, step=10,
)
noise_scale = gr.Slider(
label="Noise scale (try NOT to modify this parameter)",
minimum=0, maximum=1, value=0.4, step=0.01,
)
silent_padding = gr.Slider(
label="Add silent padding to workaround noise caused by unknown reason (in seconds)",
minimum=0, maximum=3, value=0.5, step=0.01,
)
db_threshold = gr.Slider(
label="Silence dB threshold (for slicing audio into chunks)",
minimum=-100, maximum=0, value=-40, step=1,
)
auto_clip = gr.Slider(
label="Apply auto clip to reduce memory consumption (in seconds)",
minimum=0, maximum=100, value=0, step=1,
)
clip_overlap = gr.Slider(
label="Overlap duration between auto clips (in seconds)",
minimum=0, maximum=3, value=0, step=0.01,
)
cross_fade = gr.Slider(
label="Cross fade ratio of overlapping regions",
minimum=0, maximum=1, value=0.75, step=0.01,
)
adaptive_key = gr.Slider(
label="Enhancer adaptive key (in semitones, 12 in an octave)",
minimum=-12*MAXOCTAVE, maximum=12*MAXOCTAVE, value=0, step=1,
)
crepe_f0 = gr.Slider(
label="CREPE F0 threshold (increase to reduce noise but may result in out-of-tune)",
minimum=0, maximum=1, value=0.05, step=0.01,
)
loudness_ratio = gr.Slider(
label="Loudness envelope mix ratio of input and output (0 is input and 1 is output)",
minimum=0, maximum=1, value=0, step=0.01,
)
reencode_audio = gr.Checkbox(
label="Re-encode audio before shallow diffusion, with unknown impact on final result"
)
modelbtn.click(
partial(model_fn, args.model),
inputs=[modelptr, leakctrl, diffonly, enhancer],
outputs=[modelptr, modelbtn, modelmsg, speaker],
)
inference_preset.change(
preset_fn,
inputs=[inference_preset],
outputs=[
f0_predictor, pitch_shift, leakctrl_ratio, diff_steps, noise_scale,
silent_padding, db_threshold, auto_clip, clip_overlap, cross_fade,
adaptive_key, crepe_f0, loudness_ratio, reencode_audio,
],
)
tts_btn.click(
tts_fn,
inputs=[tts_text, tts_gender, tts_lang, tts_rate, tts_volume],
outputs=[input_audio],
)
inference_btn.click(
inference_fn,
inputs=[
modelptr, speaker, input_audio,
f0_predictor, pitch_shift, leakctrl_ratio, diff_steps, noise_scale,
silent_padding, db_threshold, auto_clip, clip_overlap, cross_fade,
adaptive_key, crepe_f0, loudness_ratio, reencode_audio,
],
outputs=[output_msg, output_audio],
)
app.launch(debug=True, share=True)
|