File size: 18,853 Bytes
d8a3b21
d11a268
9c65bf3
 
b30f466
 
3590429
 
 
 
 
 
 
3851693
 
3590429
6e33bf5
eaac7ee
5a036ce
 
d8a3b21
 
 
a3d91c6
2f194e3
d8a3b21
 
434be3b
b18e1b5
 
04a20cd
 
 
d8a3b21
 
 
 
 
 
 
19a59f0
d8a3b21
19a59f0
3590429
2fa0dd7
 
 
 
3590429
2fa0dd7
3590429
 
 
 
 
 
 
d5f53fb
3590429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df8a5ee
 
b18e1b5
df8a5ee
 
cacb9ec
d9d2b55
 
 
 
 
 
 
 
 
df8a5ee
 
da3072e
 
d9d2b55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3851693
 
 
 
 
23a67e4
 
3851693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b44efa
2c89f73
3b44efa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511bca8
3b44efa
3851693
3590429
3851693
3590429
d5f53fb
 
 
c9b64a7
d5f53fb
3590429
 
179f7b9
3590429
 
d5f53fb
 
3590429
 
 
 
d5f53fb
3590429
 
 
 
 
 
d5f53fb
 
3590429
 
 
 
c9b64a7
3590429
 
c9b64a7
 
3590429
 
c9b64a7
3590429
c9b64a7
 
 
 
 
 
3590429
 
 
c9b64a7
3590429
0e3a4b3
c9b64a7
3590429
 
9a0a1ca
0e3a4b3
3590429
884d71b
0e2e1d7
884d71b
2e10ae8
3590429
 
7cee527
3590429
7cee527
3590429
2e10ae8
3590429
 
7cee527
3590429
 
 
2e10ae8
3590429
 
23f828d
3590429
 
 
 
d9e840a
27c7f11
 
 
 
 
 
3590429
f6ccd04
3590429
 
 
27c7f11
a513cc4
 
3590429
27c7f11
 
d9e840a
27c7f11
3590429
 
27c7f11
3590429
0e3a4b3
932765f
3590429
 
 
 
 
c467935
0e3a4b3
3590429
bab98a8
 
 
 
3590429
 
7cee527
3590429
 
 
bab98a8
3590429
 
7cee527
3590429
 
 
 
bab98a8
3590429
bab98a8
 
 
 
3590429
bab98a8
 
3590429
 
 
 
 
 
 
 
 
bab98a8
 
 
6eb481d
bab98a8
3590429
 
bab98a8
3590429
0e3a4b3
f422dcf
3590429
 
 
 
3ef0d7b
0e3a4b3
44feaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f3cccd
44feaa5
 
 
 
 
 
 
0f3cccd
 
 
 
 
 
 
 
 
 
44feaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
from shiny import render
from shiny.express import input, output, ui
from utils import (
    filter_and_select,
    plot_2d_comparison,
    plot_color_square,
    wens_method_heatmap,
    plot_fcgr,
    plot_persistence_homology,
    plot_distrobutions, 
    process_data_sub_specie
)
import os
import seaborn as sns
import matplotlib as mpl
mpl.rcParams.update(mpl.rcParamsDefault)


############################################################# Virus Dataset ########################################################
#ds = load_dataset('Hack90/virus_tiny')
df = pd.read_parquet('virus_ds.parquet')
virus = df['Organism_Name'].unique()
virus = {v: v for v in virus}
df_new = pd.read_parquet("distro.parquet", columns= ['organism_name'])['organism_name'].tolist()
MASTER_DF = pd.read_parquet("distro.parquet")
virus_new = {v: v for v in df_new}
loss_typesss = pd.read_csv("training_data_5.csv")['loss_type'].unique().tolist()
model_typesss = pd.read_csv("training_data_5.csv")['model_type'].unique().tolist()
param_typesss = pd.read_csv("training_data_5.csv")['param_type'].unique().tolist()

############################################################# Filter and Select ########################################################
def filter_and_select(group):
    if len(group) >= 3:
        return group.head(3)
    
############################################################# UI #################################################################

ui.page_opts(fillable=True)

with ui.navset_card_tab(id="tab"):
    with ui.nav_panel("Viral Macrostructure"):
        ui.panel_title("Do viruses have underlying structure?")
        with ui.layout_columns():
            with ui.card():
                ui.input_selectize("virus_selector", "Select your viruses:", virus, multiple=True, selected=None)
            with ui.card():
                ui.input_selectize(
                    "plot_type_macro",
                    "Select your method:",
                    ["Chaos Game Representation", "2D Line", "ColorSquare", "Persistant Homology", "Wens Method"],
                    multiple=False,
                    selected=None,
                )

        @render.plot()
        def plot_macro():
            df = pd.read_parquet("virus_ds.parquet")
            df = df[df["Organism_Name"].isin(input.virus_selector())]
            grouped = df.groupby("Organism_Name")["Sequence"].apply(list)

            plot_type = input.plot_type_macro()
            if plot_type == "2D Line":
                return plot_2d_comparison(grouped, grouped.index)
            elif plot_type == "ColorSquare":
                filtered_df = df.groupby("Organism_Name").apply(filter_and_select).reset_index(drop=True)
                return plot_color_square(filtered_df["Sequence"], filtered_df["Organism_Name"].unique())
            elif plot_type == "Wens Method":
                return wens_method_heatmap(df, df["Organism_Name"].unique())
            elif plot_type == "Chaos Game Representation":
                filtered_df = df.groupby("Organism_Name").apply(filter_and_select).reset_index(drop=True)
                return plot_fcgr(filtered_df["Sequence"], df["Organism_Name"].unique())
            elif plot_type == "Persistant Homology":
                filtered_df = df.groupby("Organism_Name").apply(filter_and_select).reset_index(drop=True)
                return plot_persistence_homology(filtered_df["Sequence"], filtered_df["Organism_Name"])
    
    with ui.nav_panel("Viral Genome Distributions"):
        ui.panel_title("How does sequence distribution vary for a specie?")
        with ui.layout_columns():
            with ui.card():
                ui.input_selectize("virus_selector_1", "Select your viruses:", virus_new, multiple=True, selected=None)
                        # with ui.card():
                ui.input_selectize(
                    "plot_type_distro",
                    "Select your distrobution variance view:",
                    ["Variance across bp", "Standard deviation across bp", "Full Genome Distrobution"],
                    multiple=False,
                    selected="Full Genome Distrobution",
                )
                

        @render.plot()
        def plot_distro_new():
            import seaborn as sns 
            plot_type = input.plot_type_distro()
            if plot_type == "Full Genome Distrobution":
                df = MASTER_DF[MASTER_DF["organism_name"].isin(input.virus_selector_1())].copy()
                df = df.explode('charts').copy()
                ax = sns.histplot(data=df, x='charts', hue='organism_name', stat='density')  
                ax.set_title("Distribution")
                ax.set_xlabel("Distance from mean")
                ax.set_ylabel("Density")
                return ax
            elif plot_type == "Standard deviation across bp":
                df = MASTER_DF[MASTER_DF["organism_name"].isin(input.virus_selector_1())].copy()
                dfs = []
                for organism in input.virus_selector_1():
                        df_tiny = df[df['organism_name'] == organism].copy()
                        y = df_tiny['std'].values[0].tolist()
                        x = [x for x in range(len(y))]
                        df_tiny = pd.DataFrame()
        
                        df_tiny['y'] = y
                        df_tiny['x'] = x
                        df_tiny['organism'] = organism
                        dfs.append(df_tiny)
                
                df_k = pd.DataFrame()
                df_k = pd.concat(dfs)
                df_k = df_k.explode(column =['x', 'y']).copy()
                ax = sns.lineplot(data=df_k, x='x',y = 'y', hue='organism')   
                ax.set_title("Standard Deviation across basepairs")
                ax.set_xlabel("Basepair")
                ax.set_ylabel("Std")
                
                return ax
            elif plot_type == "Variance across bp":
                df = MASTER_DF[MASTER_DF["organism_name"].isin(input.virus_selector_1())].copy()
                dfs = []
                for organism in input.virus_selector_1():
                        df_tiny = df[df['organism_name'] == organism].copy()
                        y = df_tiny['var'].values[0].tolist()
                        x = [x for x in range(len(y))]
                        df_tiny = pd.DataFrame()
        
                        df_tiny['y'] = y
                        df_tiny['x'] = x
                        df_tiny['organism'] = organism
                        dfs.append(df_tiny)
                
                df_k = pd.DataFrame()
                df_k = pd.concat(dfs)
                df_k = df_k.explode(column =['x', 'y']).copy()
                ax = sns.lineplot(data=df_k, x='x',y = 'y', hue='organism')   
                ax.set_title("Variance across basepairs")
                ax.set_xlabel("Basepair")
                ax.set_ylabel("Variance")
                return ax
########################################################### 2D Sub-Specie #####################################################################
    with ui.nav_panel("Virus Sub-Specie"):
        ui.panel_title("Can we create sub-specie based on 2d representation? How does their 2D representation vary?")
        with ui.layout_columns():
            with ui.card():
                ui.input_selectize("virus_selector_2", "Select your viruses:", virus_new, multiple=False, 
                                   selected='Human mastadenovirus B')
    
                ui.input_selectize(
                    "plot_type_distro_sub",
                    "Select plot type:",
                    ["2D sub-specie - nominal", "2D sub-specie - detrended"],
                    multiple=False,
                    selected="2D sub-specie - nominal",
                )
                ui.input_slider("variance", "variance from 2d rep", 1, 5, 3)
                
                

        @render.plot()
        def plot_sub_specie():
            import seaborn as sns 
            plot_type = input.plot_type_distro_sub()
            if plot_type == "2D sub-specie - nominal":
                df = pd.read_parquet('new_viral_dataset.parquet')
                df = process_data_sub_specie(df, input.virus_selector_2(), input.variance())
                fig, ax = plt.subplots()
                # Get unique groups and assign colors
                groups = df['group'].unique()
                colors = plt.cm.rainbow(np.linspace(0, 1, len(groups)))
                color_dict = dict(zip(groups, colors))
            
                # Iterate through rows and plot
                for _, row in df.iterrows():
                    x, y = zip(*row['two_d'])
                    ax.plot(x, y, c=color_dict[row['group']])
            
                # Remove duplicate labels
                handles, labels = ax.get_legend_handles_labels()
                by_label = dict(zip(labels, handles))
                #ax.legend(by_label.values(), by_label.keys())
            
                ax.set_title("Sub-specie")
    
                return ax

    
    with ui.nav_panel("Viral Microstructure"):
        ui.panel_title("Kmer Distribution")
        with ui.layout_columns():
            with ui.card():
                ui.input_slider("kmer", "kmer", 0, 10, 4)
                ui.input_slider("top_k", "top:", 0, 1000, 15)
                ui.input_selectize("plot_type", "Select metric:", ["percentage", "count"], multiple=False, selected=None)

        @render.plot()
        def plot_micro():
            df = pd.read_csv("kmers.csv")
            k = input.kmer()
            top_k = input.top_k()
            plot_type = input.plot_type()

            if k > 0:
                df = df[df["k"] == k].head(top_k)
                fig, ax = plt.subplots()
                if plot_type == "count":
                    ax.bar(df["kmer"], df["count"])
                    ax.set_ylabel("Count")
                elif plot_type == "percentage":
                    ax.bar(df["kmer"], df["percent"] * 100)
                    ax.set_ylabel("Percentage")
                ax.set_title(f"Most common {k}-mers")
                ax.set_xlabel("K-mer")
                ax.set_xticklabels(df["kmer"], rotation=90)
                return fig

    with ui.nav_panel("Viral Model Training"):
        ui.panel_title("Does context size matter for a nucleotide model?")

        def plot_loss_rates(df, model_type):
            x = np.linspace(0, 1, 1000)
            loss_rates = []
            labels = ["32", "64", "128", "256", "512", "1024"]
            df = df.drop(columns=["Step"])
            for col in df.columns:
                y = df[col].dropna().astype("float", errors="ignore").values
                f = interp1d(np.linspace(0, 1, len(y)), y)
                loss_rates.append(f(x))
            fig, ax = plt.subplots()
            for i, loss_rate in enumerate(loss_rates):
                ax.plot(x, loss_rate, label=labels[i])
            ax.legend()
            ax.set_title(f"Loss rates for a {model_type} parameter model across context windows")
            ax.set_xlabel("Training steps")
            ax.set_ylabel("Loss rate")
            return fig

        @render.plot()
        def plot_context_size_scaling():
            df = pd.read_csv("14m.csv")
            fig = plot_loss_rates(df, "14M")
            if fig:
                return fig

    with ui.nav_panel("Model loss analysis"):
        ui.panel_title("Paper stuff")
        with ui.card():
            ui.input_selectize(
                "param_type",
                "Select Param Type:",
                param_typesss,
                multiple=True,
                
            )
            ui.input_selectize(
                "model_type",
                "Select Model Type:",
                model_typesss,
                multiple=True,
                selected=["pythia", "denseformer"],
            )
            ui.input_selectize(
                "loss_type",
                "Select Loss Type:",
                loss_typesss,
                multiple=True,
                selected=["compliment", "cross_entropy", "headless"],
            )

        def plot_loss_rates_model(df, param_types, loss_types, model_types):
            x = np.linspace(0, 1, 1000)
            loss_rates = []
            labels = []
            for param_type in param_types:
                for loss_type in loss_types:
                    for model_type in model_types:
                        y = df[
                            (df["param_type"] == float(param_type))
                            & (df["loss_type"] == loss_type)
                            & (df["model_type"] == model_type)
                        ]["loss_interp"].values
                        if len(y) > 0:
                            f = interp1d(np.linspace(0, 1, len(y)), y)
                            loss_rates.append(f(x))
                            labels.append(f"{param_type}_{loss_type}_{model_type}")
            fig, ax = plt.subplots()
            for i, loss_rate in enumerate(loss_rates):
                ax.plot(x, loss_rate, label=labels[i])
            ax.legend()
            ax.set_xlabel("Training steps")
            ax.set_ylabel("Loss rate")
            return fig

        @render.plot()
        def plot_model_scaling():
            df = pd.read_csv("training_data_5.csv")
            df = df[df["epoch_interp"] > 0.035]
            fig = plot_loss_rates_model(
                df, input.param_type(), input.loss_type(), input.model_type()
            )
            if fig:
                return fig

    with ui.nav_panel("Scaling Laws"):
        ui.panel_title("Params & Losses")
        with ui.card():
            ui.input_selectize(
                "model_type_scale",
                "Select Model Type:",
                model_typesss,
                multiple=True,
                selected=["evo", "denseformer"],
            )
            ui.input_selectize(
                "loss_type_scale",
                "Select Loss Type:",
                loss_typesss,
                multiple=True,
                selected=["cross_entropy"],
            )

        def plot_loss_rates_model_scale(df, loss_type, model_types):
            df = df[df["loss_type"] == loss_type[0]]
            params = []
            loss_rates = []
            labels = []
            for model_type in model_types:
                df_new = df[df["model_type"] == model_type]
                losses = []
                params_model = []
                for paramy in df_new["num_params"].unique():
                    loss = df_new[df_new["num_params"] == paramy]["loss_interp"].min()
                    par = int(paramy)
                    losses.append(loss)
                    params_model.append(par)
                df_reorder = pd.DataFrame({"loss": losses, "params": params_model})
                df_reorder = df_reorder.sort_values(by="params")
                loss_rates.append(df_reorder["loss"].to_list())
                params.append(df_reorder["params"].to_list())
                labels.append(model_type)
            fig, ax = plt.subplots()
            for i, loss_rate in enumerate(loss_rates):
                ax.plot(params[i], loss_rate, label=labels[i])
            ax.legend()
            ax.set_xlabel("Params")
            ax.set_ylabel("Loss")
            return fig

        @render.plot()
        def plot_big_boy_model():
            df = pd.read_csv("training_data_5.csv")
            fig = plot_loss_rates_model_scale(
                df, input.loss_type_scale(), input.model_type_scale()
            )
            if fig:
                return fig
    with ui.nav_panel("Logits View"):
        ui.panel_title("Logits et all")
        with ui.card():
            ui.input_selectize(
                "model_bigness",
                "Select Model size:",
                ["14", "31", "70", "160", "410"],
                multiple=True,
                selected=["70", "160"],
            )
            ui.input_selectize(
                "loss_loss_loss",
                "Select Loss Type:",
                ["compliment", "cross_entropy", "headless", "2d_representation_GaussianPlusCE", "2d_representation_MSEPlusCE"],
                multiple=True,
                selected=["cross_entropy"],
            )
            ui.input_selectize(
                "logits_select",
                "Select logits:",
                ["1", "2", "3", "4", "5", "6", "7", "8"],
                multiple=True,
                selected=["6"],
            )
        
        def plot_logits_representation(model_bigness, loss_type, logits):
            num_rows = 2  # Number of rows in the subplot grid
            num_cols = len(logits)  # Number of columns based on the number of selected logits
            fig, axs = plt.subplots(num_rows, num_cols, figsize=(20, 10))
           # axs = axs.flatten()  # Flatten axs to handle 1D indexing
        
            for size in model_bigness:
                for loss in loss_type:
                    file_name = f"virus_pythia_{size}_1024_{loss}_logit_cumsums.npy"
                    if os.path.exists(file_name):
                        data = np.load(file_name, allow_pickle=True).item()
                        for k, logit in enumerate(logits):
                            if len(logits) == 1:
                                logit_index = int(logit) - 1
                                axs[0].plot(data['lm_logits_y_cumsum'][0, :, logit_index], label=f'Generated_{loss}_{size}')
                                axs[0].plot(data['shift_labels_y_cumsum'][0, :, logit_index], label=f'Expected_{loss}_{size}')
                                axs[0].set_title(f'Logit: {logit}- Single')
                                axs[0].legend()
                                axs[1].plot(data['lm_logits_y_full_cumsum'][0, :, logit_index], label=f'Generated_{loss}_{size}')
                                axs[1].plot(data['shift_labels_y_full_cumsum'][0, :, logit_index], label=f'Expected_{loss}_{size}')
                                axs[1].set_title(f'Logit: {logit} - Full')
                                axs[1].legend()
                    else:
                        print(f"File not found: {file_name}")
        
            for k in range(len(logits), num_cols):
                fig.delaxes(axs[k])  # Remove any extra subplots if fewer logits are selected
        
            plt.tight_layout()
            return fig

        @render.plot()
        def plot_logits_representation_ui():
            fig = plot_logits_representation(
                input.model_bigness(), input.loss_loss_loss(), input.logits_select()
            )
            if fig:
                return fig