Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -118,16 +118,12 @@ with ui.navset_card_tab(id="tab"):
|
|
118 |
ax.set_ylabel("Loss rate")
|
119 |
return fig
|
120 |
|
121 |
-
@render.
|
122 |
def plot_context_size_scaling():
|
123 |
df = pd.read_csv("14m.csv")
|
124 |
fig = plot_loss_rates(df, "14M")
|
125 |
if fig:
|
126 |
-
|
127 |
-
|
128 |
-
fd, path = tempfile.mkstemp(suffix=".svg")
|
129 |
-
fig.savefig(path)
|
130 |
-
return {"src": str(path), "width": "600px", "format": "svg"}
|
131 |
|
132 |
with ui.nav_panel("Model loss analysis"):
|
133 |
ui.panel_title("Neurips stuff")
|
@@ -178,7 +174,7 @@ with ui.navset_card_tab(id="tab"):
|
|
178 |
ax.set_ylabel("Loss rate")
|
179 |
return fig
|
180 |
|
181 |
-
@render.
|
182 |
def plot_model_scaling():
|
183 |
df = pd.read_csv("training_data_5.csv")
|
184 |
df = df[df["epoch_interp"] > 0.035]
|
@@ -186,11 +182,7 @@ with ui.navset_card_tab(id="tab"):
|
|
186 |
df, input.param_type(), input.loss_type(), input.model_type()
|
187 |
)
|
188 |
if fig:
|
189 |
-
|
190 |
-
|
191 |
-
fd, path = tempfile.mkstemp(suffix=".svg")
|
192 |
-
fig.savefig(path)
|
193 |
-
return {"src": str(path), "width": "600px", "format": "svg"}
|
194 |
|
195 |
with ui.nav_panel("Scaling Laws"):
|
196 |
ui.panel_title("Params & Losses")
|
@@ -237,15 +229,11 @@ with ui.navset_card_tab(id="tab"):
|
|
237 |
ax.set_ylabel("Loss")
|
238 |
return fig
|
239 |
|
240 |
-
@render.
|
241 |
def plot_big_boy_model():
|
242 |
df = pd.read_csv("training_data_5.csv")
|
243 |
fig = plot_loss_rates_model_scale(
|
244 |
df, input.loss_type_scale(), input.model_type_scale()
|
245 |
)
|
246 |
if fig:
|
247 |
-
|
248 |
-
|
249 |
-
fd, path = tempfile.mkstemp(suffix=".svg")
|
250 |
-
fig.savefig(path)
|
251 |
-
return {"src": str(path), "width": "600px", "format": "svg"}
|
|
|
118 |
ax.set_ylabel("Loss rate")
|
119 |
return fig
|
120 |
|
121 |
+
@render.plot()
|
122 |
def plot_context_size_scaling():
|
123 |
df = pd.read_csv("14m.csv")
|
124 |
fig = plot_loss_rates(df, "14M")
|
125 |
if fig:
|
126 |
+
return fig
|
|
|
|
|
|
|
|
|
127 |
|
128 |
with ui.nav_panel("Model loss analysis"):
|
129 |
ui.panel_title("Neurips stuff")
|
|
|
174 |
ax.set_ylabel("Loss rate")
|
175 |
return fig
|
176 |
|
177 |
+
@render.plot()
|
178 |
def plot_model_scaling():
|
179 |
df = pd.read_csv("training_data_5.csv")
|
180 |
df = df[df["epoch_interp"] > 0.035]
|
|
|
182 |
df, input.param_type(), input.loss_type(), input.model_type()
|
183 |
)
|
184 |
if fig:
|
185 |
+
return fig
|
|
|
|
|
|
|
|
|
186 |
|
187 |
with ui.nav_panel("Scaling Laws"):
|
188 |
ui.panel_title("Params & Losses")
|
|
|
229 |
ax.set_ylabel("Loss")
|
230 |
return fig
|
231 |
|
232 |
+
@render.plot()
|
233 |
def plot_big_boy_model():
|
234 |
df = pd.read_csv("training_data_5.csv")
|
235 |
fig = plot_loss_rates_model_scale(
|
236 |
df, input.loss_type_scale(), input.model_type_scale()
|
237 |
)
|
238 |
if fig:
|
239 |
+
return fig
|
|
|
|
|
|
|
|