Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1036,6 +1036,64 @@ with ui.navset_card_tab(id="tab"):
|
|
1036 |
mpl.rcParams.update(mpl.rcParamsDefault)
|
1037 |
fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type())
|
1038 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1039 |
# @output
|
1040 |
# @render.plot
|
1041 |
# def plot_training_loss():
|
|
|
1036 |
mpl.rcParams.update(mpl.rcParamsDefault)
|
1037 |
fig = plot_loss_rates_model(df, input.param_type(),input.loss_type(),input.model_type())
|
1038 |
return fig
|
1039 |
+
with ui.nav_panel("Scaling Laws"):
|
1040 |
+
ui.page_opts(fillable=True)
|
1041 |
+
ui.panel_title("Params & Losses")
|
1042 |
+
|
1043 |
+
with ui.card():
|
1044 |
+
|
1045 |
+
ui.input_selectize(
|
1046 |
+
"model_type",
|
1047 |
+
"Select Model Type:",
|
1048 |
+
["pythia", "denseformer", "evo"],
|
1049 |
+
multiple=True,
|
1050 |
+
selected=['evo','denseformer']
|
1051 |
+
)
|
1052 |
+
ui.input_selectize(
|
1053 |
+
"loss_type",
|
1054 |
+
"Select Loss Type:",
|
1055 |
+
["compliment", "cross_entropy", "headless", "2d", "2d_representation_MSEPlusCE"],
|
1056 |
+
multiple=False,
|
1057 |
+
selected="cross_entropy"
|
1058 |
+
)
|
1059 |
+
def plot_loss_rates_model_scale(df, loss_type, model_types):
|
1060 |
+
df = df[df['loss_type'] == loss_type]
|
1061 |
+
# interplot each column to be same number of points
|
1062 |
+
params = []
|
1063 |
+
loss_rates = []
|
1064 |
+
labels = []
|
1065 |
+
for model_type in model_types:
|
1066 |
+
df_new = df[df['model_type']]
|
1067 |
+
losses = []
|
1068 |
+
params_model = []
|
1069 |
+
for paramy in df_new['num_params'].unique():
|
1070 |
+
loss = df_new[df_new['num_params']==paramy].min()
|
1071 |
+
par = int(paramy)
|
1072 |
+
losses.append(loss)
|
1073 |
+
params_model.append(par)
|
1074 |
+
loss_rates.append(losses)
|
1075 |
+
params.append(params_model)
|
1076 |
+
labels.append(model_type)
|
1077 |
+
|
1078 |
+
fig, ax = plt.subplots()
|
1079 |
+
|
1080 |
+
for i, loss_rate in enumerate(loss_rates):
|
1081 |
+
ax.plot(x=params[i], y=loss_rate, label=labels[i])
|
1082 |
+
|
1083 |
+
ax.legend()
|
1084 |
+
ax.set_xlabel('Params')
|
1085 |
+
ax.set_ylabel('Loss')
|
1086 |
+
|
1087 |
+
return fig
|
1088 |
+
|
1089 |
+
import matplotlib as mpl
|
1090 |
+
@render.plot()
|
1091 |
+
def plot_loss_rates_model_scale():
|
1092 |
+
fig = None
|
1093 |
+
df = pd.read_csv('training_data_5.csv')
|
1094 |
+
mpl.rcParams.update(mpl.rcParamsDefault)
|
1095 |
+
fig = plot_loss_rates_model(df,input.loss_type(),input.model_type())
|
1096 |
+
return fig
|
1097 |
# @output
|
1098 |
# @render.plot
|
1099 |
# def plot_training_loss():
|