File size: 14,382 Bytes
5b94380
b71cdae
5b94380
4670ac7
8903ad9
4670ac7
8903ad9
 
0fd41d7
 
 
 
 
 
 
 
c3045c6
b76dece
 
0fd41d7
 
 
c67e10b
e69498d
d87afef
e69498d
 
 
 
 
 
 
 
 
 
9ad280b
e69498d
 
 
 
 
 
f5e0909
c67e10b
f5e0909
 
5407f54
f5e0909
 
 
 
 
 
4542647
f5e0909
 
4542647
 
 
f5e0909
 
 
 
 
 
 
 
 
 
c67e10b
f5e0909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ef124
f5e0909
 
 
 
4670ac7
 
 
f5e0909
 
4670ac7
5b94380
 
 
 
b71cdae
8a690f5
5b94380
 
 
 
b71cdae
8a690f5
5b94380
 
b71cdae
 
 
 
 
 
 
 
 
 
5b94380
 
 
 
 
 
 
 
b71cdae
 
5b94380
d5eb7fd
 
b71cdae
 
 
 
5b94380
d5eb7fd
 
b71cdae
 
5b94380
b71cdae
5b94380
 
7e80034
 
5b94380
 
 
7e80034
 
5b94380
3dc7215
 
4670ac7
5b94380
 
 
3dc7215
 
 
 
 
 
 
5b94380
 
 
3dc7215
 
 
 
 
 
 
 
5b94380
 
3dc7215
 
 
 
 
 
 
 
 
 
5b94380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dc7215
 
 
 
5b94380
 
 
 
 
 
 
 
 
 
 
 
3dc7215
5b94380
 
 
 
 
 
 
3dc7215
5b94380
 
 
 
 
 
 
3dc7215
 
 
 
 
 
 
5b94380
 
 
 
3dc7215
 
5b94380
 
 
 
3dc7215
 
5b94380
 
3dc7215
 
 
 
 
 
 
 
 
5b94380
 
 
 
 
 
3dc7215
5b94380
 
 
3dc7215
5b94380
 
 
 
 
3dc7215
 
5b94380
3dc7215
 
 
 
 
 
 
5b94380
 
 
3dc7215
 
5b94380
 
 
 
3dc7215
 
5b94380
 
3dc7215
 
 
 
 
 
 
 
 
5b94380
 
 
 
3dc7215
 
 
5b94380
 
 
 
 
 
 
3dc7215
5b94380
3dc7215
5b94380
299eef5
5b94380
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import pandas as pd

from huggingface_hub import HfApi

script_dir = os.path.dirname(os.path.abspath(__file__))  # Directory of the running script



def get_baseline_df(selected_methods, selected_metrics, leaderboard_path="/tmp/leaderboard_results.csv"):
    if not os.path.exists(leaderboard_path):
        benchmark_types = [] #only download leaderboard
        download_from_hub(benchmark_types)

    leaderboard_df = pd.read_csv(leaderboard_path)

    if selected_methods is not None and selected_metrics is not None:
        present_columns = ["Method"] + selected_metrics
        leaderboard_df = leaderboard_df[leaderboard_df['Method'].isin(selected_methods)][present_columns]
    return leaderboard_df


def save_results(method_name, benchmark_types, results, repo_id="HUBioDataLab/probe-data", repo_type="space"):
    #First, download files to be updated from {repo_id}
    download_from_hub(benchmark_types, repo_id, repo_type)

    #Update local files
    for benchmark_type in benchmark_types:
        if benchmark_type == 'similarity':
            save_similarity_output(results['similarity'], method_name)
        elif benchmark_type == 'function':
            save_function_output(results['function'], method_name)
        elif benchmark_type == 'family':
            save_family_output(results['family'], method_name)
        elif benchmark_type == "affinity":
            save_affinity_output(results['affinity'], method_name)

    #Upload local files to the {repo_id}
    upload_to_hub(benchmark_types, repo_id, repo_type)

    return 0


def download_from_hub(benchmark_types, repo_id="HUBioDataLab/probe-data", repo_type="space"):
    api = HfApi(token=os.getenv("api-key")) #load api-key secret

    benchmark_types.append("leaderboard")
    for benchmark in benchmark_types:
        file_name = f"{benchmark}_results.csv"
        local_path = f"/tmp/{file_name}"
        
        try:
            # Download the file from the specified repo
            api.hf_hub_download(
                repo_id=repo_id,
                repo_type=repo_type,
                filename=file_name,
                local_dir="/tmp",
                token=os.getenv("api-key"),
            )
            print(f"Downloaded {file_name} from {repo_id} to {local_path}")

        except Exception as e:
            print(f"Failed to download {file_name}: {e}")


    return 0


def upload_to_hub(benchmark_types, repo_id="HUBioDataLab/probe-data", repo_type="space"):
    api = HfApi(token=os.getenv("api_key"))  # Requires authentication via HF_TOKEN

    for benchmark in benchmark_types:
        file_name = f"{benchmark}_results.csv"
        local_path = f"/tmp/{file_name}"

        api.upload_file(
            path_or_fileobj=local_path,
            path_in_repo=file_name,
            repo_id=repo_id,
            repo_type=repo_type,
            commit_message=f"Updating {file_name}"
        )
        print(f"Uploaded {local_path} to {repo_id}/{file_name}")

        os.remove(local_path)
        print(f"Removed local file: {local_path}")

    return 0


def save_similarity_output(
    output_dict,
    method_name,
    leaderboard_path="/tmp/leaderboard_results.csv",
    similarity_path="/tmp/similarity_results.csv",
):
    # Load or initialize the DataFrames
    if os.path.exists(leaderboard_path):
        leaderboard_df = pd.read_csv(leaderboard_path)
    else:
        print("Leaderboard file not found!")
        return -1

    if os.path.exists(similarity_path):
        similarity_df = pd.read_csv(similarity_path)
    else:
        print("Similarity file not found!")
        return -1

    if method_name not in similarity_df['Method'].values:
        # Create a new row for the method with default values
        new_row = {col: None for col in similarity_df.columns}
        new_row['Method'] = method_name
        similarity_df = pd.concat([similarity_df, pd.DataFrame([new_row])], ignore_index=True)

    if method_name not in leaderboard_df['Method'].values:
        new_row = {col: None for col in leaderboard_df.columns}
        new_row['Method'] = method_name
        leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)

    averages = {}
    for dataset in ['sparse', '200', '500']:
        correlation_values = []
        pvalue_values = []

        for aspect in ['MF', 'BP', 'CC']:
            correlation_key = f"{dataset}_{aspect}_correlation"
            pvalue_key = f"{dataset}_{aspect}_pvalue"

            # Update correlation if present
            if correlation_key in output_dict:
                correlation = output_dict[correlation_key].item()
                correlation_values.append(correlation)
                similarity_df.loc[similarity_df['Method'] == method_name, correlation_key] = correlation
                leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{correlation_key}"] = correlation

            # Update p-value if present
            if pvalue_key in output_dict:
                pvalue = output_dict[pvalue_key].item()
                pvalue_values.append(pvalue)
                similarity_df.loc[similarity_df['Method'] == method_name, pvalue_key] = pvalue
                leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{pvalue_key}"] = pvalue

        # Calculate averages if all three aspects are present
        if len(correlation_values) == 3:
            averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
            similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
            leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]

        if len(pvalue_values) == 3:
            averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
            similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
            leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]

    leaderboard_df.to_csv(leaderboard_path, index=False)
    similarity_df.to_csv(similarity_path, index=False)

    return 0


def save_function_output(
    model_output, 
    method_name, 
    func_results_path="/tmp/function_results.csv", 
    leaderboard_path="/tmp/leaderboard_results.csv"
):
    # Load or initialize the DataFrames
    if os.path.exists(leaderboard_path):
        leaderboard_df = pd.read_csv(leaderboard_path)
    else:
        print("Leaderboard file not found!")
        return -1

    if os.path.exists(func_results_path):
        func_results_df = pd.read_csv(func_results_path)
    else:
        print("Function file not found!")
        return -1

    if method_name not in func_results_df['Method'].values:
        # Create a new row for the method with default values
        new_row = {col: None for col in func_results_df.columns}
        new_row['Method'] = method_name
        func_results_df = pd.concat([func_results_df, pd.DataFrame([new_row])], ignore_index=True)

    if method_name not in leaderboard_df['Method'].values:
        new_row = {col: None for col in leaderboard_df.columns}
        new_row['Method'] = method_name
        leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)

    
    # Storage for averaging in leaderboard results
    metrics_sum = {
        'accuracy': {'BP': [], 'CC': [], 'MF': []},
        'F1': {'BP': [], 'CC': [], 'MF': []},
        'precision': {'BP': [], 'CC': [], 'MF': []},
        'recall': {'BP': [], 'CC': [], 'MF': []}
    }

    # Iterate over each entry in model_output
    for entry in model_output:
        key = entry[0]
        accuracy, f1, precision, recall = entry[1], entry[4], entry[7], entry[10]

        # Parse the key to extract the aspect and datasets
        aspect, dataset1, dataset2 = key.split('_')

        # Save each metric to function_results under its respective column
        func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy
        func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1
        func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision
        func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall

        # Add values for leaderboard averaging
        metrics_sum['accuracy'][aspect].append(accuracy)
        metrics_sum['F1'][aspect].append(f1)
        metrics_sum['precision'][aspect].append(precision)
        metrics_sum['recall'][aspect].append(recall)

    # Calculate averages for each aspect and overall (if all aspects have entries)
    for metric in ['accuracy', 'F1', 'precision', 'recall']:
        for aspect in ['BP', 'CC', 'MF']:
            if metrics_sum[metric][aspect]:
                aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
                leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_{aspect}_{metric}"] = aspect_average

        # Calculate overall average if each aspect has entries
        if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
            overall_average = sum(
                sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
                for aspect in ['BP', 'CC', 'MF']
            ) / 3
            leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_Ave_{metric}"] = overall_average

    # Save updated DataFrames to CSV
    func_results_df.to_csv(func_results_path, index=False)
    leaderboard_df.to_csv(leaderboard_path, index=False)

    return 0

    
def save_family_output(
    model_output, 
    method_name, 
    leaderboard_path="/tmp/leaderboard_results.csv", 
    family_results_path="/tmp/family_results.csv"
):
    # Load or initialize the DataFrames
    if os.path.exists(leaderboard_path):
        leaderboard_df = pd.read_csv(leaderboard_path)
    else:
        print("Leaderboard file not found!")
        return -1

    if os.path.exists(family_results_path):
        family_results_df = pd.read_csv(family_results_path)
    else:
        print("Family file not found!")
        return -1

    if method_name not in family_results_df['Method'].values:
        # Create a new row for the method with default values
        new_row = {col: None for col in family_results_df.columns}
        new_row['Method'] = method_name
        family_results_df = pd.concat([family_results_df, pd.DataFrame([new_row])], ignore_index=True)

    if method_name not in leaderboard_df['Method'].values:
        new_row = {col: None for col in leaderboard_df.columns}
        new_row['Method'] = method_name
        leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)

    # Iterate through the datasets and metrics
    for dataset, metrics in model_output.items():
        for metric, values in metrics.items():
            # Calculate the average for each metric in leaderboard results
            avg_value = sum(values) / len(values) if values else None
            leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value

            # Save each fold result for family results
            for i, value in enumerate(values):
                family_results_df.loc[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value

    # Save updated DataFrames to CSV
    leaderboard_df.to_csv(leaderboard_path, index=False)
    family_results_df.to_csv(family_results_path, index=False)

    return 0


def save_affinity_output(
    model_output, 
    method_name, 
    leaderboard_path="/tmp/leaderboard_results.csv", 
    affinity_results_path="/tmp/affinity_results.csv"
):
    # Load or initialize the DataFrames
    if os.path.exists(leaderboard_path):
        leaderboard_df = pd.read_csv(leaderboard_path)
    else:
        print("Leaderboard file not found!")
        return -1

    if os.path.exists(affinity_results_path):
        affinity_results_df = pd.read_csv(affinity_results_path)
    else:
        print("Affinity file not found!")
        return -1

    if method_name not in affinity_results_df['Method'].values:
        # Create a new row for the method with default values
        new_row = {col: None for col in affinity_results_df.columns}
        new_row['Method'] = method_name
        affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame([new_row])], ignore_index=True)

    if method_name not in leaderboard_df['Method'].values:
        new_row = {col: None for col in leaderboard_df.columns}
        new_row['Method'] = method_name
        leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)

    # Process 'summary' section for leaderboard results
    summary = model_output.get('summary', {})
    if summary:
        leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error')
        leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error')
        leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr')

    # Process 'detail' section for affinity results
    detail = model_output.get('detail', {})
    if detail:
        # Save each 10-fold cross-validation result for mse, mae, and corr
        for i in range(10):
            if 'val_mse_errors' in detail:
                affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i]
            if 'val_mae_errors' in detail:
                affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i]
            if 'validation_corrs' in detail:
                affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"correlation_{i}"] = detail['validation_corrs'][i]

    # Save updated DataFrames to CSV
    leaderboard_df.to_csv(leaderboard_path, index=False)
    affinity_results_df.to_csv(affinity_results_path, index=False)

    return 0