Spaces:
Sleeping
Sleeping
Update src/saving_utils.py
Browse files- src/saving_utils.py +54 -13
src/saving_utils.py
CHANGED
@@ -1,16 +1,47 @@
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
|
4 |
-
|
5 |
|
|
|
6 |
|
7 |
-
def save_similarity_output(output_dict, method_name, leaderboard_path="data/leaderboard_results.csv", similarity_path="data/similarity_results.csv"):
|
8 |
-
leaderboard_path = os.path.join(script_dir, leaderboard_path)
|
9 |
-
similarity_path = os.path.join(script_dir, similarity_path)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Load or initialize the DataFrames
|
15 |
if os.path.exists(leaderboard_path):
|
16 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
@@ -24,7 +55,6 @@ def save_similarity_output(output_dict, method_name, leaderboard_path="data/lead
|
|
24 |
print("Similarity file not found!")
|
25 |
return -1
|
26 |
|
27 |
-
# Ensure the method exists in the similarity DataFrame
|
28 |
if method_name not in similarity_df['Method'].values:
|
29 |
# Create a new row for the method with default values
|
30 |
new_row = {col: None for col in similarity_df.columns}
|
@@ -74,11 +104,22 @@ def save_similarity_output(output_dict, method_name, leaderboard_path="data/lead
|
|
74 |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
75 |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
76 |
|
77 |
-
# Save
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return 0
|
83 |
|
84 |
def save_function_output(model_output, method_name, func_results_path="/home/user/app/src/data/function_results.csv", leaderboard_path="/home/user/app/src/data/leaderboard_results.csv"):
|
|
|
1 |
import os
|
2 |
import pandas as pd
|
3 |
|
4 |
+
from huggingface_hub import HfApi
|
5 |
|
6 |
+
script_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the running script
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
+
def save_csv_locally(dataframe, file_name, save_dir="/tmp"):
|
10 |
+
# Ensure the save directory exists
|
11 |
+
os.makedirs(save_dir, exist_ok=True)
|
12 |
+
|
13 |
+
# Construct the full file path
|
14 |
+
file_path = os.path.join(save_dir, file_name)
|
15 |
+
|
16 |
+
# Save the DataFrame as a CSV
|
17 |
+
dataframe.to_csv(file_path, index=False)
|
18 |
+
print(f"Saved {file_name} to {file_path}")
|
19 |
+
|
20 |
+
return file_path
|
21 |
+
|
22 |
+
def upload_to_hub(local_path, remote_path, repo_id, repo_type="dataset"):
|
23 |
+
api = HfApi() # Requires authentication via HF_TOKEN
|
24 |
+
api.upload_file(
|
25 |
+
path_or_fileobj=local_path,
|
26 |
+
path_in_repo=remote_path,
|
27 |
+
repo_id=repo_id,
|
28 |
+
repo_type=repo_type,
|
29 |
+
commit_message=f"Updating {os.path.basename(remote_path)}"
|
30 |
+
)
|
31 |
+
print(f"Uploaded {local_path} to {repo_id}/{remote_path}")
|
32 |
+
|
33 |
+
def cleanup_local_file(file_path):
|
34 |
+
if os.path.exists(file_path):
|
35 |
+
os.remove(file_path)
|
36 |
+
print(f"Removed local file: {file_path}")
|
37 |
+
|
38 |
+
def save_similarity_output(
|
39 |
+
output_dict,
|
40 |
+
method_name,
|
41 |
+
leaderboard_path="/home/user/app/src/data/leaderboard_results.csv",
|
42 |
+
similarity_path="/home/user/app/src/data/similarity_results.csv",
|
43 |
+
repo_id="mgyigit/probe3",
|
44 |
+
):
|
45 |
# Load or initialize the DataFrames
|
46 |
if os.path.exists(leaderboard_path):
|
47 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
|
|
55 |
print("Similarity file not found!")
|
56 |
return -1
|
57 |
|
|
|
58 |
if method_name not in similarity_df['Method'].values:
|
59 |
# Create a new row for the method with default values
|
60 |
new_row = {col: None for col in similarity_df.columns}
|
|
|
104 |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
105 |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
106 |
|
107 |
+
# Save locally to a temporary directory
|
108 |
+
leaderboard_file = save_csv_locally(leaderboard_df, "leaderboard_results.csv")
|
109 |
+
similarity_file = save_csv_locally(similarity_df, "similarity_results.csv")
|
110 |
+
|
111 |
+
# Upload to Hugging Face Hub
|
112 |
+
try:
|
113 |
+
upload_to_hub(leaderboard_file, "leaderboard_results.csv", repo_id)
|
114 |
+
upload_to_hub(similarity_file, "similarity_results.csv", repo_id)
|
115 |
+
except Exception as e:
|
116 |
+
print(f"Failed to upload files: {e}")
|
117 |
+
return -1
|
118 |
+
|
119 |
+
# Clean up local files
|
120 |
+
cleanup_local_file(leaderboard_file)
|
121 |
+
cleanup_local_file(similarity_file)
|
122 |
+
|
123 |
return 0
|
124 |
|
125 |
def save_function_output(model_output, method_name, func_results_path="/home/user/app/src/data/function_results.csv", leaderboard_path="/home/user/app/src/data/leaderboard_results.csv"):
|