Spaces:
Sleeping
Sleeping
Update src/saving_utils.py
Browse files- src/saving_utils.py +52 -35
src/saving_utils.py
CHANGED
@@ -6,6 +6,55 @@ from huggingface_hub import HfApi
|
|
6 |
script_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the running script
|
7 |
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def save_csv_locally(dataframe, file_name, save_dir="/tmp"):
|
10 |
# Ensure the save directory exists
|
11 |
os.makedirs(save_dir, exist_ok=True)
|
@@ -19,28 +68,13 @@ def save_csv_locally(dataframe, file_name, save_dir="/tmp"):
|
|
19 |
|
20 |
return file_path
|
21 |
|
22 |
-
def upload_to_hub(local_path, remote_path, repo_id, repo_type="space"):
|
23 |
-
api = HfApi(token=os.getenv("api_key")) # Requires authentication via HF_TOKEN
|
24 |
-
api.upload_file(
|
25 |
-
path_or_fileobj=local_path,
|
26 |
-
path_in_repo=remote_path,
|
27 |
-
repo_id=repo_id,
|
28 |
-
repo_type=repo_type,
|
29 |
-
commit_message=f"Updating {os.path.basename(remote_path)}"
|
30 |
-
)
|
31 |
-
print(f"Uploaded {local_path} to {repo_id}/{remote_path}")
|
32 |
-
|
33 |
-
def cleanup_local_file(file_path):
|
34 |
-
if os.path.exists(file_path):
|
35 |
-
os.remove(file_path)
|
36 |
-
print(f"Removed local file: {file_path}")
|
37 |
|
38 |
def save_similarity_output(
|
39 |
output_dict,
|
40 |
method_name,
|
41 |
-
leaderboard_path="/
|
42 |
-
similarity_path="/
|
43 |
-
repo_id="mgyigit/
|
44 |
):
|
45 |
# Load or initialize the DataFrames
|
46 |
if os.path.exists(leaderboard_path):
|
@@ -61,16 +95,12 @@ def save_similarity_output(
|
|
61 |
new_row['Method'] = method_name
|
62 |
similarity_df = pd.concat([similarity_df, pd.DataFrame([new_row])], ignore_index=True)
|
63 |
|
64 |
-
# Same for the leaderboard DataFrame
|
65 |
if method_name not in leaderboard_df['Method'].values:
|
66 |
new_row = {col: None for col in leaderboard_df.columns}
|
67 |
new_row['Method'] = method_name
|
68 |
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
|
69 |
|
70 |
-
# Initialize storage for averages
|
71 |
averages = {}
|
72 |
-
|
73 |
-
# Iterate through the datasets and calculate averages
|
74 |
for dataset in ['sparse', '200', '500']:
|
75 |
correlation_values = []
|
76 |
pvalue_values = []
|
@@ -104,22 +134,9 @@ def save_similarity_output(
|
|
104 |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
105 |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
106 |
|
107 |
-
# Save locally to a temporary directory
|
108 |
leaderboard_file = save_csv_locally(leaderboard_df, "leaderboard_results.csv")
|
109 |
similarity_file = save_csv_locally(similarity_df, "similarity_results.csv")
|
110 |
|
111 |
-
# Upload to Hugging Face Hub
|
112 |
-
try:
|
113 |
-
upload_to_hub(leaderboard_file, "leaderboard_results.csv", repo_id)
|
114 |
-
upload_to_hub(similarity_file, "similarity_results.csv", repo_id)
|
115 |
-
except Exception as e:
|
116 |
-
print(f"Failed to upload files: {e}")
|
117 |
-
return -1
|
118 |
-
|
119 |
-
# Clean up local files
|
120 |
-
cleanup_local_file(leaderboard_file)
|
121 |
-
cleanup_local_file(similarity_file)
|
122 |
-
|
123 |
return 0
|
124 |
|
125 |
def save_function_output(model_output, method_name, func_results_path="/home/user/app/src/data/function_results.csv", leaderboard_path="/home/user/app/src/data/leaderboard_results.csv"):
|
|
|
6 |
script_dir = os.path.dirname(os.path.abspath(__file__)) # Directory of the running script
|
7 |
|
8 |
|
9 |
+
|
10 |
+
def download_files_from_hub(benchmark_types, repo_id="mgyigit/probe-data", repo_type="space"):
|
11 |
+
api = HfApi(token=os.getenv("api-key")) #load api-key secret
|
12 |
+
|
13 |
+
benchmark_types += "leaderboard"
|
14 |
+
for benchmark in benchmark_types:
|
15 |
+
file_name = f"{benchmark}_results.csv"
|
16 |
+
local_path = f"/tmp/{file_name}"
|
17 |
+
|
18 |
+
try:
|
19 |
+
# Download the file from the specified repo
|
20 |
+
api.download_file(
|
21 |
+
repo_id=repo_id,
|
22 |
+
path_in_repo=file_name,
|
23 |
+
local_dir="/tmp",
|
24 |
+
repo_type=repo_type,
|
25 |
+
)
|
26 |
+
print(f"Downloaded {file_name} from {repo_id} to {local_path}")
|
27 |
+
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Failed to download {file_name}: {e}")
|
30 |
+
|
31 |
+
|
32 |
+
return 0
|
33 |
+
|
34 |
+
|
35 |
+
def upload_to_hub(benchmark_types, repo_id="mgyigit/probe-data", repo_type="space"):
|
36 |
+
api = HfApi(token=os.getenv("api_key")) # Requires authentication via HF_TOKEN
|
37 |
+
benchmark_types += "leaderboard"
|
38 |
+
|
39 |
+
for benchmark in benchmark_types:
|
40 |
+
file_name = f"{benchmark}_results.csv"
|
41 |
+
local_path = f"/tmp/{file_name}"
|
42 |
+
|
43 |
+
api.upload_file(
|
44 |
+
path_or_fileobj=local_path,
|
45 |
+
path_in_repo=file_name,
|
46 |
+
repo_id=repo_id,
|
47 |
+
repo_type=repo_type,
|
48 |
+
commit_message=f"Updating {file_name}"
|
49 |
+
)
|
50 |
+
print(f"Uploaded {local_path} to {repo_id}/{file_name}")
|
51 |
+
|
52 |
+
os.remove(local_path)
|
53 |
+
print(f"Removed local file: {file_path}")
|
54 |
+
|
55 |
+
return 0
|
56 |
+
|
57 |
+
|
58 |
def save_csv_locally(dataframe, file_name, save_dir="/tmp"):
|
59 |
# Ensure the save directory exists
|
60 |
os.makedirs(save_dir, exist_ok=True)
|
|
|
68 |
|
69 |
return file_path
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
def save_similarity_output(
|
73 |
output_dict,
|
74 |
method_name,
|
75 |
+
leaderboard_path="/tmp/leaderboard_results.csv",
|
76 |
+
similarity_path="/tmp/similarity_results.csv",
|
77 |
+
repo_id="mgyigit/probe-data",
|
78 |
):
|
79 |
# Load or initialize the DataFrames
|
80 |
if os.path.exists(leaderboard_path):
|
|
|
95 |
new_row['Method'] = method_name
|
96 |
similarity_df = pd.concat([similarity_df, pd.DataFrame([new_row])], ignore_index=True)
|
97 |
|
|
|
98 |
if method_name not in leaderboard_df['Method'].values:
|
99 |
new_row = {col: None for col in leaderboard_df.columns}
|
100 |
new_row['Method'] = method_name
|
101 |
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
|
102 |
|
|
|
103 |
averages = {}
|
|
|
|
|
104 |
for dataset in ['sparse', '200', '500']:
|
105 |
correlation_values = []
|
106 |
pvalue_values = []
|
|
|
134 |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
135 |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
136 |
|
|
|
137 |
leaderboard_file = save_csv_locally(leaderboard_df, "leaderboard_results.csv")
|
138 |
similarity_file = save_csv_locally(similarity_df, "similarity_results.csv")
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
return 0
|
141 |
|
142 |
def save_function_output(model_output, method_name, func_results_path="/home/user/app/src/data/function_results.csv", leaderboard_path="/home/user/app/src/data/leaderboard_results.csv"):
|