Spaces:
Running
Running
File size: 9,510 Bytes
e15a3a6 1eec854 e15a3a6 1eec854 e15a3a6 1eec854 e15a3a6 1eec854 f6de5fc 6d6ad59 8b8c6ec b77e734 e15a3a6 1eec854 e15a3a6 1eec854 e15a3a6 1eec854 e15a3a6 1eec854 00d2ac6 1eec854 a991354 1eec854 a991354 8b8c6ec 1eec854 8b8c6ec 1eec854 8b8c6ec a991354 1eec854 39a0f1b 00d2ac6 39a0f1b e7f4530 39a0f1b e7f4530 00d2ac6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import os.path
from typing import Optional
import matplotlib.pyplot as plt
import numpy as np
import soundfile as sf
import streamlit as st
import torch
import transformers
from dtw import dtw
from scipy import signal
from transformers import AutoConfig
from transformers.models.wav2vec2 import Wav2Vec2Model
from datetime import datetime
from random import randrange
import os
import psutil
def play_audio(filename):
audio_file = open(filename, "rb")
audio_bytes = audio_file.read()
st.audio(audio_bytes, format="audio/wav")
def aligner(x, y):
return dtw(x, y, keep_internals=True)
def compute_costs(gcm):
res = [[] for _ in range(gcm.N)]
for i in range(gcm.index1.shape[0]):
d = gcm.localCostMatrix[gcm.index1[i], gcm.index2[i]]
res[gcm.index1[i]].append(d)
n = [len(x) for x in res]
res = [np.mean(x) for x in res]
return res, n
#@st.cache(show_spinner=False, hash_funcs={torch.nn.parameter.Parameter: lambda _: None}, max_entries=1)
def load_wav2vec2_featurizer(model_id: str, layer: Optional[int] = None):
transformers.logging.set_verbosity(transformers.logging.ERROR)
model_kwargs = {}
if layer is not None:
model_kwargs["num_hidden_layers"] = int(layer) if layer > 0 else 0
with st.spinner("Loading model..."):
model = Wav2Vec2Model.from_pretrained(model_id, **model_kwargs)
model.eval()
if torch.cuda.is_available():
model.cuda()
# st.success("Done!")
return model
#@st.cache(persist=True, show_spinner=False, max_entries=3)
def run(model_id, layer, filename_x, filename_y):
model = load_wav2vec2_featurizer(model_id, layer)
@torch.no_grad()
def _featurize(path):
input_values, rate = sf.read(path, dtype=np.float32)
if len(input_values.shape) == 2:
input_values = input_values.mean(1)
if rate != 16_000:
new_length = int(input_values.shape[0] / rate * 16_000)
input_values = signal.resample(input_values, new_length)
input_values = torch.from_numpy(input_values).unsqueeze(0)
if torch.cuda.is_available():
input_values = input_values.cuda()
if layer is None:
hidden_states = model(input_values, output_hidden_states=True).hidden_states
hidden_states = [s.squeeze(0).cpu().numpy() for s in hidden_states]
return hidden_states
if layer >= 0:
hidden_state = model(input_values).last_hidden_state.squeeze(0).cpu().numpy()
else:
hidden_state = model.feature_extractor(input_values)
hidden_state = hidden_state.transpose(1, 2)
if layer == -1:
hidden_state = model.feature_projection(hidden_state)
hidden_state = hidden_state.squeeze(0).cpu().numpy()
return hidden_state
with st.spinner("Measuring distance..."):
feats_x = _featurize(filename_x)
feats_y = _featurize(filename_y)
print('3. Features computed', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
gcm = aligner(feats_x, feats_y)
print('4. Alignments computed', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
d = gcm.normalizedDistance
print("Distance:", d)
c, n = compute_costs(gcm)
print('5. Costs computed', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
del model
return d, c, n
def main():
st.title("Word-level Neural Acoustic Distance Visualizer")
st.write(
"This tool visualizes pronunciation differences between two recordings of the same word. The two recordings have to be wave files containing a single spoken word. \n\n\
Choose any wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2) and select the output layer you want to use.\n\n\
To upload your own recordings select 'custom upload' in the audio file selection step. The first recording is put on the x-axis of the plot and the second one will be the reference recording for computing distance.\n\
You should already see an example plot of two sample recordings.\n\n\
This visualization tool is part of [neural representations for modeling variation in speech](https://doi.org/10.1016/j.wocn.2022.101137). \n\
Please see our paper for further details.")
st.subheader("Model selection:")
model_id = st.selectbox("Select the wav2vec 2.0 model you want to use:",
("facebook/wav2vec2-large-960h", "facebook/wav2vec2-large", "facebook/wav2vec2-large-xlsr-53",
"facebook/wav2vec2-xls-r-300m", "other"),
index=0)
if model_id == "other":
model_id = st.text_input("Enter the wav2vec 2.0 model you want to use:",
value="facebook/wav2vec2-large-960h",
key="model")
print(f"\n### Start new run\n") # test
try:
cfg = AutoConfig.from_pretrained(model_id)
layer = st.number_input("Select the layer you want to use:", min_value=1, max_value=cfg.num_hidden_layers, value=10)
except OSError:
st.error(
"Please select a wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2)."
)
layer = None
print('1. Model selected', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
st.subheader("Audio file selection:")
filename_x = st.selectbox("Filename (x-axis):",
("falling_huud_mobiel_201145.wav", "falling_hood_mobiel_203936.wav", "custom upload"))
if filename_x == "falling_huud_mobiel_201145.wav":
filename_x = "./examples/falling_huud_mobiel_201145.wav"
play_audio(filename_x)
if filename_x == "falling_hood_mobiel_203936.wav":
filename_x = "./examples/falling_hood_mobiel_203936.wav"
play_audio(filename_x)
filename_y = st.selectbox("Filename (y-axis):",
("falling_hood_mobiel_203936.wav", "falling_huud_mobiel_201145.wav", "custom upload"))
if filename_y == "falling_huud_mobiel_201145.wav":
filename_y = "./examples/falling_huud_mobiel_201145.wav"
play_audio(filename_y)
if filename_y == "falling_hood_mobiel_203936.wav":
filename_y = "./examples/falling_hood_mobiel_203936.wav"
play_audio(filename_y)
if filename_x == "custom upload":
filename_x = st.file_uploader("Choose a file (x-axis)", key="f_x")
if filename_y == "custom upload":
filename_y = st.file_uploader("Choose a file (y-axis)", key="f_y")
print('2. Files selected', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
if filename_x is not None and filename_y is not None and layer is not None:
print(f"\nX: {filename_x}\nY: {filename_y}")
d, c, n = run(model_id, layer, filename_x, filename_y)
# d_b, c_b, n_b = run(featurizer_b)
fig, axes = plt.subplots(figsize=(4, 2.5))
print('6. Plot init', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
window_size = 9
rate = 20
x = np.arange(0, len(c) * rate, rate)
offset = (window_size - 1) // 2
x_ = x[offset:-offset]
# Target layer
axes.plot(x, c, alpha=0.5, color="gray", linestyle="--")
axes.scatter(x, c, np.array(n) * 10, color="gray")
c_ = np.convolve(c, np.ones(window_size) / window_size, mode="valid")
axes.plot(x_, c_)
# Last layer
# axes.plot(x, c_b, alpha=0.5, color="gray", linestyle="--")
# axes.scatter(x, c_b, np.array(n_b) * 10, color="gray")
# c_b_ = np.convolve(c_b, np.ones(window_size) / window_size, mode="valid")
# axes.plot(x_, c_b_, linestyle="--")
axes.set_xlabel("time (ms)")
axes.set_ylabel("distance per frame")
axes.hlines(y=d, xmin=0, xmax=np.max(x), linestyles="dashdot")
plt.tight_layout(pad=0)
plt_id = randrange(0, 10)
plt.savefig("./output/plot" + str(plt_id) + ".pdf")
st.pyplot(fig)
main()
print('7. Plot filled', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
if os.path.isfile("./output/plot.pdf"):
st.caption(" Visualization of neural acoustic distances\
per frame (based on wav2vec 2.0) with the pronunciation of\
the first filename on the x-axis and distances to the pronunciation\
of second filename on the y-axis. The horizontal line represents\
the global distance value (i.e. the average of all individual frames).\
The blue continuous line represents the moving average distance based on 9 frames,\
corresponding to 180ms. As a result of the moving average, the blue line does not cover the entire duration of\
the sample. Larger bullet sizes indicate that multiple\
frames in the pronunciation on the y-axis are aligned to a single frame in the pronunciation on the x-axis.")
with open("./output/plot.pdf", "rb") as file:
btn = st.download_button(label="Download plot", data=file, file_name="plot.pdf", mime="image/pdf")
print('8. End', datetime.now().strftime('%d-%m-%Y %H:%M:%S')) # test
print(f"9. RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB") # test
for name in dir():
if not name.startswith('_'):
del globals()[name]
import gc
gc.collect() |