Spaces:
Running
Running
Wietse de Vries
commited on
Commit
·
1eec854
1
Parent(s):
da8f6fb
add caching
Browse files- neural_acoustic_distance.py +118 -115
neural_acoustic_distance.py
CHANGED
@@ -1,97 +1,28 @@
|
|
1 |
-
from unicodedata import name
|
2 |
-
import streamlit as st
|
3 |
-
import pandas as pd
|
4 |
-
import numpy as np
|
5 |
import os.path
|
|
|
6 |
|
7 |
-
from dtw import dtw
|
8 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
9 |
import transformers
|
10 |
-
from
|
|
|
11 |
from transformers import AutoConfig
|
|
|
12 |
|
13 |
-
st.title("Word-level Neural Acoustic Distance Visualizer")
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
This visualization tool is part of [neural representations for modeling variation in speech](https://doi.org/10.1016/j.wocn.2022.101137). \n\
|
20 |
-
Please see our paper for further details.")
|
21 |
-
|
22 |
-
st.subheader("Model selection:")
|
23 |
-
|
24 |
-
model_id = st.selectbox(
|
25 |
-
"Select the wav2vec 2.0 model you want to use:",
|
26 |
-
("facebook/wav2vec2-large-960h", "facebook/wav2vec2-large", "facebook/wav2vec2-large-xlsr-53", "facebook/wav2vec2-xls-r-300m", "other"), index = 0)
|
27 |
-
|
28 |
-
if model_id == "other":
|
29 |
-
model_id = st.text_input("Enter the wav2vec 2.0 model you want to use:", value = "facebook/wav2vec2-large-960h", key = "model")
|
30 |
|
31 |
-
try:
|
32 |
-
cfg = AutoConfig.from_pretrained(model_id)
|
33 |
-
layer = st.number_input("Select the layer you want to use:",
|
34 |
-
min_value = 1, max_value = cfg.num_hidden_layers, value=10)
|
35 |
-
|
36 |
-
def load_wav2vec2_featurizer(model_id: str, layer: Optional[int] = None):
|
37 |
-
from transformers.models.wav2vec2 import Wav2Vec2Model
|
38 |
-
import soundfile as sf
|
39 |
-
from scipy import signal
|
40 |
-
import torch
|
41 |
-
import numpy as np
|
42 |
-
|
43 |
-
transformers.logging.set_verbosity(transformers.logging.ERROR)
|
44 |
-
|
45 |
-
model_kwargs = {}
|
46 |
-
if layer is not None:
|
47 |
-
model_kwargs["num_hidden_layers"] = layer if layer > 0 else 0
|
48 |
-
|
49 |
-
with st.spinner("Loading..."):
|
50 |
-
model = Wav2Vec2Model.from_pretrained(model_id, **model_kwargs)
|
51 |
-
model.eval()
|
52 |
-
if torch.cuda.is_available():
|
53 |
-
model.cuda()
|
54 |
-
st.success("Done!")
|
55 |
-
|
56 |
-
@torch.no_grad()
|
57 |
-
def _featurize(path):
|
58 |
-
input_values, rate = sf.read(path, dtype=np.float32)
|
59 |
-
if len(input_values.shape) == 2:
|
60 |
-
input_values = input_values.mean(1)
|
61 |
-
if rate != 16_000:
|
62 |
-
new_length = int(input_values.shape[0] / rate * 16_000)
|
63 |
-
input_values = signal.resample(input_values, new_length)
|
64 |
-
|
65 |
-
input_values = torch.from_numpy(input_values).unsqueeze(0)
|
66 |
-
if torch.cuda.is_available():
|
67 |
-
input_values = input_values.cuda()
|
68 |
-
|
69 |
-
if layer is None:
|
70 |
-
hidden_states = model(input_values, output_hidden_states=True).hidden_states
|
71 |
-
hidden_states = [s.squeeze(0).cpu().numpy() for s in hidden_states]
|
72 |
-
return hidden_states
|
73 |
-
|
74 |
-
if layer >= 0:
|
75 |
-
hidden_state = model(input_values).last_hidden_state.squeeze(0).cpu().numpy()
|
76 |
-
else:
|
77 |
-
hidden_state = model.feature_extractor(input_values)
|
78 |
-
hidden_state = hidden_state.transpose(1, 2)
|
79 |
-
if layer == -1:
|
80 |
-
hidden_state = model.feature_projection(hidden_state)
|
81 |
-
hidden_state = hidden_state.squeeze(0).cpu().numpy()
|
82 |
-
|
83 |
-
return hidden_state
|
84 |
-
|
85 |
-
return _featurize
|
86 |
-
|
87 |
-
featurizer_a = load_wav2vec2_featurizer(model_id, layer)
|
88 |
-
except OSError:
|
89 |
-
st.error("Please select a wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2).")
|
90 |
-
featurizer_a = None
|
91 |
|
92 |
-
def aligner(x, y)
|
93 |
return dtw(x, y, keep_internals=True)
|
94 |
|
|
|
95 |
def compute_costs(gcm):
|
96 |
res = [[] for _ in range(gcm.N)]
|
97 |
|
@@ -103,16 +34,105 @@ def compute_costs(gcm):
|
|
103 |
res = [np.mean(x) for x in res]
|
104 |
return res, n
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
st.subheader("Audio file selection:")
|
112 |
|
113 |
-
filename_x = st.selectbox(
|
114 |
-
|
115 |
-
("falling_huud_mobiel_201145.wav", "falling_hood_mobiel_203936.wav", "custom upload"))
|
116 |
|
117 |
if filename_x == "falling_huud_mobiel_201145.wav":
|
118 |
filename_x = "./examples/falling_huud_mobiel_201145.wav"
|
@@ -121,9 +141,8 @@ if filename_x == "falling_hood_mobiel_203936.wav":
|
|
121 |
filename_x = "./examples/falling_hood_mobiel_203936.wav"
|
122 |
play_audio(filename_x)
|
123 |
|
124 |
-
filename_y = st.selectbox(
|
125 |
-
"
|
126 |
-
("falling_hood_mobiel_203936.wav", "falling_huud_mobiel_201145.wav", "custom upload"))
|
127 |
|
128 |
if filename_y == "falling_huud_mobiel_201145.wav":
|
129 |
filename_y = "./examples/falling_huud_mobiel_201145.wav"
|
@@ -133,28 +152,17 @@ if filename_y == "falling_hood_mobiel_203936.wav":
|
|
133 |
play_audio(filename_y)
|
134 |
|
135 |
if filename_x == "custom upload":
|
136 |
-
filename_x = st.file_uploader("Choose a file (x-axis)", key
|
137 |
if filename_y == "custom upload":
|
138 |
-
filename_y = st.file_uploader("Choose a file (y-axis)", key
|
139 |
|
140 |
-
if filename_x is not None and filename_y is not None and
|
141 |
print(f"\nX: {filename_x}\nY: {filename_y}")
|
142 |
|
143 |
-
|
144 |
-
feats_x = featurizer(filename_x)
|
145 |
-
feats_y = featurizer(filename_y)
|
146 |
-
gcm = aligner(feats_x, feats_y)
|
147 |
-
|
148 |
-
d = gcm.normalizedDistance
|
149 |
-
print("\nDistance:", d)
|
150 |
-
|
151 |
-
c, n = compute_costs(gcm)
|
152 |
-
return d, c, n
|
153 |
-
|
154 |
-
d, c, n = run(featurizer_a)
|
155 |
# d_b, c_b, n_b = run(featurizer_b)
|
156 |
|
157 |
-
fig, axes = plt.subplots(figsize=(4,2.5))
|
158 |
|
159 |
window_size = 9
|
160 |
rate = 20
|
@@ -194,9 +202,4 @@ if filename_x is not None and filename_y is not None and featurizer_a is not Non
|
|
194 |
frames in the pronunciation on the y-axis are aligned to a single frame in the pronunciation on the x-axis.")
|
195 |
|
196 |
with open("./output/plot.pdf", "rb") as file:
|
197 |
-
btn = st.download_button(
|
198 |
-
label="Download plot",
|
199 |
-
data=file,
|
200 |
-
file_name="plot.pdf",
|
201 |
-
mime="image/pdf"
|
202 |
-
)
|
|
|
|
|
|
|
|
|
|
|
1 |
import os.path
|
2 |
+
from typing import Optional
|
3 |
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import soundfile as sf
|
7 |
+
import streamlit as st
|
8 |
+
import torch
|
9 |
import transformers
|
10 |
+
from dtw import dtw
|
11 |
+
from scipy import signal
|
12 |
from transformers import AutoConfig
|
13 |
+
from transformers.models.wav2vec2 import Wav2Vec2Model
|
14 |
|
|
|
15 |
|
16 |
+
def play_audio(filename):
|
17 |
+
audio_file = open(filename, "rb")
|
18 |
+
audio_bytes = audio_file.read()
|
19 |
+
st.audio(audio_bytes, format="audio/wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
def aligner(x, y):
|
23 |
return dtw(x, y, keep_internals=True)
|
24 |
|
25 |
+
|
26 |
def compute_costs(gcm):
|
27 |
res = [[] for _ in range(gcm.N)]
|
28 |
|
|
|
34 |
res = [np.mean(x) for x in res]
|
35 |
return res, n
|
36 |
|
37 |
+
|
38 |
+
@st.cache(show_spinner=False, hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
|
39 |
+
def load_wav2vec2_featurizer(model_id: str, layer: Optional[int] = None):
|
40 |
+
transformers.logging.set_verbosity(transformers.logging.ERROR)
|
41 |
+
|
42 |
+
model_kwargs = {}
|
43 |
+
if layer is not None:
|
44 |
+
model_kwargs["num_hidden_layers"] = int(layer) if layer > 0 else 0
|
45 |
+
|
46 |
+
with st.spinner("Loading model..."):
|
47 |
+
model = Wav2Vec2Model.from_pretrained(model_id, **model_kwargs)
|
48 |
+
model.eval()
|
49 |
+
if torch.cuda.is_available():
|
50 |
+
model.cuda()
|
51 |
+
# st.success("Done!")
|
52 |
+
|
53 |
+
@torch.no_grad()
|
54 |
+
def _featurize(path):
|
55 |
+
input_values, rate = sf.read(path, dtype=np.float32)
|
56 |
+
if len(input_values.shape) == 2:
|
57 |
+
input_values = input_values.mean(1)
|
58 |
+
if rate != 16_000:
|
59 |
+
new_length = int(input_values.shape[0] / rate * 16_000)
|
60 |
+
input_values = signal.resample(input_values, new_length)
|
61 |
+
|
62 |
+
input_values = torch.from_numpy(input_values).unsqueeze(0)
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
input_values = input_values.cuda()
|
65 |
+
|
66 |
+
if layer is None:
|
67 |
+
hidden_states = model(input_values, output_hidden_states=True).hidden_states
|
68 |
+
hidden_states = [s.squeeze(0).cpu().numpy() for s in hidden_states]
|
69 |
+
return hidden_states
|
70 |
+
|
71 |
+
if layer >= 0:
|
72 |
+
hidden_state = model(input_values).last_hidden_state.squeeze(0).cpu().numpy()
|
73 |
+
else:
|
74 |
+
hidden_state = model.feature_extractor(input_values)
|
75 |
+
hidden_state = hidden_state.transpose(1, 2)
|
76 |
+
if layer == -1:
|
77 |
+
hidden_state = model.feature_projection(hidden_state)
|
78 |
+
hidden_state = hidden_state.squeeze(0).cpu().numpy()
|
79 |
+
|
80 |
+
return hidden_state
|
81 |
+
|
82 |
+
return _featurize
|
83 |
+
|
84 |
+
|
85 |
+
@st.cache(persist=True, show_spinner=False)
|
86 |
+
def run(model_id, layer, filename_x, filename_y):
|
87 |
+
featurizer = load_wav2vec2_featurizer(model_id, layer)
|
88 |
+
|
89 |
+
with st.spinner("Measuring distance..."):
|
90 |
+
feats_x = featurizer(filename_x)
|
91 |
+
feats_y = featurizer(filename_y)
|
92 |
+
gcm = aligner(feats_x, feats_y)
|
93 |
+
|
94 |
+
d = gcm.normalizedDistance
|
95 |
+
print("Distance:", d)
|
96 |
+
|
97 |
+
c, n = compute_costs(gcm)
|
98 |
+
return d, c, n
|
99 |
+
|
100 |
+
|
101 |
+
st.title("Word-level Neural Acoustic Distance Visualizer")
|
102 |
+
|
103 |
+
st.write(
|
104 |
+
"This tool visualizes pronunciation differences between two recordings of the same word. The two recordings have to be wave files containing a single spoken word. \n\n\
|
105 |
+
Choose any wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2) and select the output layer you want to use.\n\n\
|
106 |
+
To upload your own recordings select 'custom upload' in the audio file selection step. The first recording is put on the x-axis of the plot and the second one will be the reference recording for computing distance.\n\
|
107 |
+
You should already see an example plot of two sample recordings.\n\n\
|
108 |
+
This visualization tool is part of [neural representations for modeling variation in speech](https://doi.org/10.1016/j.wocn.2022.101137). \n\
|
109 |
+
Please see our paper for further details.")
|
110 |
+
|
111 |
+
st.subheader("Model selection:")
|
112 |
+
|
113 |
+
model_id = st.selectbox("Select the wav2vec 2.0 model you want to use:",
|
114 |
+
("facebook/wav2vec2-large-960h", "facebook/wav2vec2-large", "facebook/wav2vec2-large-xlsr-53",
|
115 |
+
"facebook/wav2vec2-xls-r-300m", "other"),
|
116 |
+
index=0)
|
117 |
+
|
118 |
+
if model_id == "other":
|
119 |
+
model_id = st.text_input("Enter the wav2vec 2.0 model you want to use:",
|
120 |
+
value="facebook/wav2vec2-large-960h",
|
121 |
+
key="model")
|
122 |
+
|
123 |
+
try:
|
124 |
+
cfg = AutoConfig.from_pretrained(model_id)
|
125 |
+
layer = st.number_input("Select the layer you want to use:", min_value=1, max_value=cfg.num_hidden_layers, value=10)
|
126 |
+
except OSError:
|
127 |
+
st.error(
|
128 |
+
"Please select a wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2)."
|
129 |
+
)
|
130 |
+
layer = None
|
131 |
|
132 |
st.subheader("Audio file selection:")
|
133 |
|
134 |
+
filename_x = st.selectbox("Filename (x-axis):",
|
135 |
+
("falling_huud_mobiel_201145.wav", "falling_hood_mobiel_203936.wav", "custom upload"))
|
|
|
136 |
|
137 |
if filename_x == "falling_huud_mobiel_201145.wav":
|
138 |
filename_x = "./examples/falling_huud_mobiel_201145.wav"
|
|
|
141 |
filename_x = "./examples/falling_hood_mobiel_203936.wav"
|
142 |
play_audio(filename_x)
|
143 |
|
144 |
+
filename_y = st.selectbox("Filename (y-axis):",
|
145 |
+
("falling_hood_mobiel_203936.wav", "falling_huud_mobiel_201145.wav", "custom upload"))
|
|
|
146 |
|
147 |
if filename_y == "falling_huud_mobiel_201145.wav":
|
148 |
filename_y = "./examples/falling_huud_mobiel_201145.wav"
|
|
|
152 |
play_audio(filename_y)
|
153 |
|
154 |
if filename_x == "custom upload":
|
155 |
+
filename_x = st.file_uploader("Choose a file (x-axis)", key="f_x")
|
156 |
if filename_y == "custom upload":
|
157 |
+
filename_y = st.file_uploader("Choose a file (y-axis)", key="f_y")
|
158 |
|
159 |
+
if filename_x is not None and filename_y is not None and layer is not None:
|
160 |
print(f"\nX: {filename_x}\nY: {filename_y}")
|
161 |
|
162 |
+
d, c, n = run(model_id, layer, filename_x, filename_y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
# d_b, c_b, n_b = run(featurizer_b)
|
164 |
|
165 |
+
fig, axes = plt.subplots(figsize=(4, 2.5))
|
166 |
|
167 |
window_size = 9
|
168 |
rate = 20
|
|
|
202 |
frames in the pronunciation on the y-axis are aligned to a single frame in the pronunciation on the x-axis.")
|
203 |
|
204 |
with open("./output/plot.pdf", "rb") as file:
|
205 |
+
btn = st.download_button(label="Download plot", data=file, file_name="plot.pdf", mime="image/pdf")
|
|
|
|
|
|
|
|
|
|