Spaces:
Running
Running
Martijn Bartelds
commited on
Commit
·
e15a3a6
1
Parent(s):
a0036b2
Add app files
Browse files- examples/falling_hood_mobiel_203936.wav +0 -0
- examples/falling_huud_mobiel_201145.wav +0 -0
- neural_acoustic_distance.py +194 -0
- output/plot.pdf +0 -0
- requirements.txt +12 -0
examples/falling_hood_mobiel_203936.wav
ADDED
Binary file (51.3 kB). View file
|
|
examples/falling_huud_mobiel_201145.wav
ADDED
Binary file (35.6 kB). View file
|
|
neural_acoustic_distance.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import os.path
|
5 |
+
|
6 |
+
from dtw import dtw
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import transformers
|
9 |
+
from typing import Any, Optional
|
10 |
+
from transformers import AutoConfig
|
11 |
+
|
12 |
+
st.title("Word-level Neural Acoustic Distance Visualizer")
|
13 |
+
|
14 |
+
st.write("This tool visualizes pronunciation differences between two recordings of the same word. The two recordings have to be wave files (mono 16-bit PCM at 16 kHz) containing a single spoken word. \n\n\
|
15 |
+
Choose any wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2) and select the output layer you want to use.\n\n\
|
16 |
+
To upload your own recordings select 'custom upload' in the audio file selection step. The first recording is put on the x-axis of the plot and the second one will be the reference recording for computing distance.\n\
|
17 |
+
You should already see an example plot of two sample recordings.\n\n\
|
18 |
+
This visualization tool is part of [neural representations for modeling variation in speech](https://doi.org/10.1016/j.wocn.2022.101137). \n\
|
19 |
+
Please see our paper for further details.")
|
20 |
+
|
21 |
+
st.subheader("Model selection:")
|
22 |
+
|
23 |
+
model_id = st.selectbox(
|
24 |
+
"Select the wav2vec 2.0 model you want to use:",
|
25 |
+
("facebook/wav2vec2-large-960h", "facebook/wav2vec2-large", "facebook/wav2vec2-large-xlsr-53", "facebook/wav2vec2-xls-r-300m", "other"), index = 0)
|
26 |
+
|
27 |
+
if model_id == "other":
|
28 |
+
model_id = st.text_input("Enter the wav2vec 2.0 model you want to use:", value = "facebook/wav2vec2-large-960h", key = "model")
|
29 |
+
|
30 |
+
try:
|
31 |
+
cfg = AutoConfig.from_pretrained(model_id)
|
32 |
+
print(cfg.num_hidden_layers)
|
33 |
+
layer = st.number_input("Select the layer you want to use:",
|
34 |
+
min_value = 1, max_value = cfg.num_hidden_layers, value=10)
|
35 |
+
|
36 |
+
def load_wav2vec2_featurizer(model_id: str, layer: Optional[int] = None):
|
37 |
+
from transformers.models.wav2vec2 import Wav2Vec2Model
|
38 |
+
import soundfile as sf
|
39 |
+
from scipy import signal
|
40 |
+
import torch
|
41 |
+
import numpy as np
|
42 |
+
|
43 |
+
transformers.logging.set_verbosity(transformers.logging.ERROR)
|
44 |
+
|
45 |
+
model_kwargs = {}
|
46 |
+
if layer is not None:
|
47 |
+
model_kwargs["num_hidden_layers"] = layer if layer > 0 else 0
|
48 |
+
|
49 |
+
with st.spinner("Loading..."):
|
50 |
+
model = Wav2Vec2Model.from_pretrained(model_id, **model_kwargs)
|
51 |
+
model.eval()
|
52 |
+
if torch.cuda.is_available():
|
53 |
+
model.cuda()
|
54 |
+
st.success("Done!")
|
55 |
+
|
56 |
+
@torch.no_grad()
|
57 |
+
def _featurize(path):
|
58 |
+
input_values, rate = sf.read(path, dtype=np.float32)
|
59 |
+
if len(input_values.shape) == 2:
|
60 |
+
input_values = input_values.mean(1)
|
61 |
+
if rate != 16_000:
|
62 |
+
new_length = int(input_values.shape[0] / rate * 16_000)
|
63 |
+
input_values = signal.resample(input_values, new_length)
|
64 |
+
|
65 |
+
input_values = torch.from_numpy(input_values).unsqueeze(0)
|
66 |
+
if torch.cuda.is_available():
|
67 |
+
input_values = input_values.cuda()
|
68 |
+
|
69 |
+
if layer is None:
|
70 |
+
hidden_states = model(input_values, output_hidden_states=True).hidden_states
|
71 |
+
hidden_states = [s.squeeze(0).cpu().numpy() for s in hidden_states]
|
72 |
+
return hidden_states
|
73 |
+
|
74 |
+
if layer >= 0:
|
75 |
+
hidden_state = model(input_values).last_hidden_state.squeeze(0).cpu().numpy()
|
76 |
+
else:
|
77 |
+
hidden_state = model.feature_extractor(input_values)
|
78 |
+
hidden_state = hidden_state.transpose(1, 2)
|
79 |
+
if layer == -1:
|
80 |
+
hidden_state = model.feature_projection(hidden_state)
|
81 |
+
hidden_state = hidden_state.squeeze(0).cpu().numpy()
|
82 |
+
|
83 |
+
return hidden_state
|
84 |
+
|
85 |
+
return _featurize
|
86 |
+
|
87 |
+
featurizer_a = load_wav2vec2_featurizer(model_id, layer)
|
88 |
+
except OSError:
|
89 |
+
st.error("Please select a wav2vec 2.0 compatible model identifier on the [Hugging Face Model Hub](https://huggingface.co/models?filter=wav2vec2).")
|
90 |
+
featurizer_a = None
|
91 |
+
|
92 |
+
def aligner(x, y) -> Any:
|
93 |
+
return dtw(x, y, keep_internals=True)
|
94 |
+
|
95 |
+
def compute_costs(gcm):
|
96 |
+
res = [[] for _ in range(gcm.N)]
|
97 |
+
|
98 |
+
for i in range(gcm.index1.shape[0]):
|
99 |
+
d = gcm.localCostMatrix[gcm.index1[i], gcm.index2[i]]
|
100 |
+
res[gcm.index1[i]].append(d)
|
101 |
+
|
102 |
+
n = [len(x) for x in res]
|
103 |
+
res = [np.mean(x) for x in res]
|
104 |
+
return res, n
|
105 |
+
|
106 |
+
st.subheader("Audio file selection:")
|
107 |
+
|
108 |
+
filename_x = st.selectbox(
|
109 |
+
"Filename (x-axis):",
|
110 |
+
("falling_huud_mobiel_201145.wav", "falling_hood_mobiel_203936.wav", "custom upload"))
|
111 |
+
|
112 |
+
if filename_x == "falling_huud_mobiel_201145.wav":
|
113 |
+
filename_x = "./examples/falling_huud_mobiel_201145.wav"
|
114 |
+
if filename_x == "falling_hood_mobiel_203936.wav":
|
115 |
+
filename_x = "./examples/falling_hood_mobiel_203936.wav"
|
116 |
+
|
117 |
+
filename_y = st.selectbox(
|
118 |
+
"Filename (y-axis):",
|
119 |
+
("falling_hood_mobiel_203936.wav", "falling_huud_mobiel_201145.wav", "custom upload"))
|
120 |
+
|
121 |
+
if filename_y == "falling_huud_mobiel_201145.wav":
|
122 |
+
filename_y = "./examples/falling_huud_mobiel_201145.wav"
|
123 |
+
if filename_y == "falling_hood_mobiel_203936.wav":
|
124 |
+
filename_y = "./examples/falling_hood_mobiel_203936.wav"
|
125 |
+
|
126 |
+
if filename_x == "custom upload":
|
127 |
+
filename_x = st.file_uploader("Choose a file", key = "f_x")
|
128 |
+
if filename_y == "custom upload":
|
129 |
+
filename_y = st.file_uploader("Choose a file", key = "f_y")
|
130 |
+
|
131 |
+
if filename_x is not None and filename_y is not None and featurizer_a is not None:
|
132 |
+
print(f"\nX: {filename_x}\nY: {filename_y}")
|
133 |
+
|
134 |
+
def run(featurizer):
|
135 |
+
feats_x = featurizer(filename_x)
|
136 |
+
feats_y = featurizer(filename_y)
|
137 |
+
gcm = aligner(feats_x, feats_y)
|
138 |
+
|
139 |
+
d = gcm.normalizedDistance
|
140 |
+
print("\nDistance:", d)
|
141 |
+
|
142 |
+
c, n = compute_costs(gcm)
|
143 |
+
return d, c, n
|
144 |
+
|
145 |
+
d, c, n = run(featurizer_a)
|
146 |
+
# d_b, c_b, n_b = run(featurizer_b)
|
147 |
+
|
148 |
+
fig, axes = plt.subplots(figsize=(4,2.5))
|
149 |
+
|
150 |
+
window_size = 9
|
151 |
+
rate = 20
|
152 |
+
x = np.arange(0, len(c) * rate, rate)
|
153 |
+
offset = (window_size - 1) // 2
|
154 |
+
x_ = x[offset:-offset]
|
155 |
+
|
156 |
+
# Target layer
|
157 |
+
axes.plot(x, c, alpha=0.5, color="gray", linestyle="--")
|
158 |
+
axes.scatter(x, c, np.array(n) * 10, color="gray")
|
159 |
+
c_ = np.convolve(c, np.ones(window_size) / window_size, mode="valid")
|
160 |
+
axes.plot(x_, c_)
|
161 |
+
|
162 |
+
# Last layer
|
163 |
+
# axes.plot(x, c_b, alpha=0.5, color="gray", linestyle="--")
|
164 |
+
# axes.scatter(x, c_b, np.array(n_b) * 10, color="gray")
|
165 |
+
# c_b_ = np.convolve(c_b, np.ones(window_size) / window_size, mode="valid")
|
166 |
+
# axes.plot(x_, c_b_, linestyle="--")
|
167 |
+
|
168 |
+
axes.set_xlabel("time (ms)")
|
169 |
+
axes.set_ylabel("distance per frame")
|
170 |
+
axes.hlines(y=d, xmin=0, xmax=np.max(x), linestyles="dashdot")
|
171 |
+
|
172 |
+
plt.tight_layout(pad=0)
|
173 |
+
plt.savefig("./output/plot.pdf")
|
174 |
+
st.pyplot(fig)
|
175 |
+
|
176 |
+
if os.path.isfile("./output/plot.pdf"):
|
177 |
+
if st.button("Info"):
|
178 |
+
st.write(" Visualization of neural acoustic distances\
|
179 |
+
per frame (based on wav2vec 2.0) with the pronunciation of\
|
180 |
+
of the first filename on the x-axis and distances to the pronunciation\
|
181 |
+
of second filename on the y-axis. The horizontal line represents\
|
182 |
+
the global distance value (i.e. the average of all individual frames).\
|
183 |
+
The blue continuous line represents the moving average distance based on 9 frames,\
|
184 |
+
corresponding to 180ms. As a result of the moving average, the blue line does not cover the entire duration of\
|
185 |
+
the sample. Larger bullet sizes indicate that multiple\
|
186 |
+
frames in the pronunciation on the y-axis are aligned to a single frame in the pronunciation on the x-axis.")
|
187 |
+
|
188 |
+
with open("./output/plot.pdf", "rb") as file:
|
189 |
+
btn = st.download_button(
|
190 |
+
label="Download plot",
|
191 |
+
data=file,
|
192 |
+
file_name="plot.pdf",
|
193 |
+
mime="image/pdf"
|
194 |
+
)
|
output/plot.pdf
ADDED
Binary file (20.5 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dtw-python==1.1.6
|
2 |
+
editdistance==0.5.3
|
3 |
+
fairseq @ git+https://github.com/pytorch/fairseq@aa39ab1b4568479bf9a1360cfcdd4f4fce5f1838
|
4 |
+
matplotlib==3.3.2
|
5 |
+
numpy==1.19.1
|
6 |
+
onnxruntime==1.8.1
|
7 |
+
pandas==1.1.3
|
8 |
+
scipy==1.5.2
|
9 |
+
seaborn==0.11.0
|
10 |
+
SoundFile==0.10.2
|
11 |
+
torch==1.6.0
|
12 |
+
tqdm==4.50.2
|