File size: 13,803 Bytes
0d0f07a
 
 
 
b24ad56
d734e6b
0d0f07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169869e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0f07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdf0a5e
0d0f07a
 
 
 
 
 
 
bdf0a5e
 
 
 
 
 
 
 
 
 
 
 
 
0d0f07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb441e
0d0f07a
 
 
8fb441e
0d0f07a
 
 
 
169869e
 
 
 
cdb0a70
169869e
cdb0a70
169869e
cdb0a70
169869e
cdb0a70
169869e
cdb0a70
169869e
 
 
bdf0a5e
 
 
 
 
 
 
 
 
 
 
 
 
 
7088ca8
 
 
 
 
 
 
 
 
 
bdf0a5e
8fb441e
0d0f07a
 
 
 
 
 
 
 
 
 
14c3a4f
 
0d0f07a
 
 
 
 
 
 
169869e
0d0f07a
 
 
 
 
 
 
 
 
 
 
 
 
169869e
0d0f07a
 
 
 
 
 
169869e
0d0f07a
 
 
8fb441e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0f07a
 
7b3478d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0f07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb441e
b24ad56
 
 
336b5df
 
 
 
 
 
b24ad56
336b5df
b24ad56
8fb441e
 
 
 
 
 
b24ad56
8fb441e
 
 
 
 
 
 
 
 
 
 
 
b24ad56
 
 
 
7088ca8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d0f07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdf0a5e
0d0f07a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from gensim.models import Word2Vec
from collections import defaultdict
import os
import tempfile
import pandas as pd
import xlsxwriter


def load_all_models():
    '''
        Load all word2vec models
    '''

    archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
    classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
    early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
    hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
    late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
    
    return [archaic, classical, early_roman, hellen, late_roman]


def load_selected_models(selected_models):
    '''
        Load the selected word2vec models
    '''
    models = []
    for model in selected_models:
        if model == "Early Roman":
            model = "early_roman"
        elif model == "Late Roman":
            model = "late_roman"
        elif model == "Hellenistic":
            model = "hellen"
        model_name = model.lower() + "_cbow"
        models.append([model_name, load_word2vec_model(f'models/{model_name}.model')])
    
    return models


def load_word2vec_model(model_path):
    '''
        Load a word2vec model from a file
    '''
    return Word2Vec.load(model_path)


def get_word_vector(model, word):
    '''
        Return the word vector of a word
    '''
    return model.wv[word]


def iterate_over_words(model):
    '''
        Iterate over all words in the vocabulary and print their vectors
    '''
    index = 0
    for word, index in model.wv.key_to_index.items():
        vector = get_word_vector(model, word)
        print(f'{index} Word: {word}, Vector: {vector}')
        index += 1


def model_dictionary(model):
    '''
        Return the dictionary of the word2vec model
        Key is the word and value is the vector of the word
    '''
    dict = defaultdict(list)
    for word, index in model.wv.key_to_index.items():
        vector = get_word_vector(model, word)
        dict[word] = vector
    
    return dict  
    
    
def dot_product(vector_a, vector_b):
    '''
        Return the dot product of two vectors
    '''
    return sum(a * b for a, b in zip(vector_a, vector_b))


def magnitude(vector):
    '''
        Return the magnitude of a vector
    '''
    return sum(x**2 for x in vector) ** 0.5


def cosine_similarity(vector_a, vector_b):
    '''
        Return the cosine similarity of two vectors
    '''
    dot_prod = dot_product(vector_a, vector_b)
    mag_a = magnitude(vector_a)
    mag_b = magnitude(vector_b)

    # Avoid division by zero
    if mag_a == 0 or mag_b == 0:
        return 0.0

    similarity = dot_prod / (mag_a * mag_b)
    return "{:.2f}".format(similarity)


def get_cosine_similarity(word1, time_slice_1, word2, time_slice_2):
    '''
        Return the cosine similarity of two words
    '''
    # TO DO: MOET NETTER
    
    # Return if path does not exist
    
    time_slice_1 = convert_time_name_to_model(time_slice_1)
    time_slice_2 = convert_time_name_to_model(time_slice_2)
    
    if not os.path.exists(f'models/{time_slice_1}.model'):
        return
    
    model_1 = load_word2vec_model(f'models/{time_slice_1}.model')
    model_2 = load_word2vec_model(f'models/{time_slice_2}.model')
    
    dict_1 = model_dictionary(model_1)
    dict_2 = model_dictionary(model_2)
    
    return cosine_similarity(dict_1[word1], dict_2[word2])


def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
    '''
        Return the cosine similarity of one word in two different time slices
    '''
   
    # Return if path does not exist
    if not os.path.exists(f'models/{time_slice1}.model') or not os.path.exists(f'models/{time_slice2}.model'):
        return 
    
    model1 = load_word2vec_model(f'models/{time_slice1}.model')
    model2 = load_word2vec_model(f'models/{time_slice2}.model')
    
    dict1 = model_dictionary(model1)
    dict2 = model_dictionary(model2)
    
    return cosine_similarity(dict1[word], dict2[word])



def validate_nearest_neighbours(word, n, models):
    '''
        Validate the input of the nearest neighbours function
    '''
    if word == '' or n == '' or models == []:
        return False
    return True


def convert_model_to_time_name(model_name):
    '''
        Convert the model name to the time slice name
    '''
    if model_name == 'archaic_cbow' or model_name == 'archaic':
        return 'Archaic'
    elif model_name == 'classical_cbow' or model_name == 'classical':
        return 'Classical'
    elif model_name == 'early_roman_cbow' or model_name == 'early_roman':
        return 'Early Roman'
    elif model_name == 'hellen_cbow' or model_name == 'hellen':
        return 'Hellenistic'
    elif model_name == 'late_roman_cbow' or model_name == 'late_roman':
        return 'Late Roman'


def convert_time_name_to_model(time_name):
    '''
        Convert the time slice name to the model name
    '''
    if time_name == 'Archaic':
        return 'archaic_cbow'
    elif time_name == 'Classical':
        return 'classical_cbow'
    elif time_name == 'Early Roman':
        return 'early_roman_cbow'
    elif time_name == 'Hellenistic':
        return 'hellen_cbow'
    elif time_name == 'Late Roman':
        return 'late_roman_cbow'
    elif time_name == 'classical':
        return 'Classical'
    elif time_name == 'early_roman':
        return 'Early Roman'
    elif time_name == 'hellen':
        return 'Hellenistic'
    elif time_name == 'late_roman':
        return 'Late Roman'
    elif time_name == 'archaic':
        return 'Archaic'

def get_nearest_neighbours2(word, n=10, models=load_all_models()):
    '''
        Return the nearest neighbours of a word
        
        word: the word for which the nearest neighbours are calculated
        time_slice_model: the word2vec model of the time slice of the input word
        models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)
        n: the number of nearest neighbours to return (default: 10)
        
        Return: list of tuples with the word, the time slice and 
                the cosine similarity of the nearest neighbours
    '''  

    time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
    vector_1 = get_word_vector(time_slice_model, word)
    nearest_neighbours = []
    
    # Iterate over all models
    for model in models: 
        model_name = model[0]
        time_name = convert_model_to_time_name(model_name)
        model = model[1]

        # Iterate over all words of the model
        for word, index in model.wv.key_to_index.items():
            
            # Vector of the current word
            vector_2 = get_word_vector(model, word)
            
            # Calculate the cosine similarity between current word and input word
            cosine_similarity_vectors = cosine_similarity(vector_1, vector_2)
            
            # If the list of nearest neighbours is not full yet, add the current word
            if len(nearest_neighbours) < n: 
                nearest_neighbours.append((word, time_name, cosine_similarity_vectors))
            
            # If the list of nearest neighbours is full, replace the word with the smallest cosine similarity
            else: 
                smallest_neighbour = min(nearest_neighbours, key=lambda x: x[2])
                if cosine_similarity_vectors > smallest_neighbour[2]:
                    nearest_neighbours.remove(smallest_neighbour)
                    nearest_neighbours.append((word, time_name, cosine_similarity_vectors))

    
    return sorted(nearest_neighbours, key=lambda x: x[2], reverse=True)


def get_nearest_neighbours(target_word, n=10, models=load_all_models()):
    """
    Return the nearest neighbours of a word for the given models
    
    word: the word for which the nearest neighbours are calculated
    n: the number of nearest neighbours to return (default: 10)
    models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)

    Return: { 'model_name': [(word, cosine_similarity), ...], ... }
    """
    nearest_neighbours = {}
    
    # Iterate over models and compute nearest neighbours
    for model in models:
        model_neighbours = []
        model_name = convert_model_to_time_name(model[0])
        model = model[1]
        vector_1 = get_word_vector(model, target_word)
        
        # Iterate over all words of the model
        for word, index in model.wv.key_to_index.items():
            vector_2 = get_word_vector(model, word)
            cosine_sim = cosine_similarity(vector_1, vector_2)
            
            # If the list of nearest neighbours is not full yet, add the current word
            if len(model_neighbours) < n:
                model_neighbours.append((word, cosine_sim))
            else:
                # If the list of nearest neighbours is full, replace the word with the smallest cosine similarity
                smallest_neighbour = min(model_neighbours, key=lambda x: x[1])
                if cosine_sim > smallest_neighbour[1]:
                    model_neighbours.remove(smallest_neighbour)
                    model_neighbours.append((word, cosine_sim))
        
        # Sort the nearest neighbours by cosine similarity
        model_neighbours = sorted(model_neighbours, key=lambda x: x[1], reverse=True)
        
        # Add the model name and the nearest neighbours to the dictionary
        nearest_neighbours[model_name] = model_neighbours
    
    return nearest_neighbours

        
    

def get_nearest_neighbours_vectors(word, time_slice_model, n=15):
    """
        Returns the vectors of the nearest neighbours of a word
    """
    model_name = convert_model_to_time_name(time_slice_model)
    time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
    vector_1 = get_word_vector(time_slice_model, word)
    nearest_neighbours = []
    

    
    for word, index in time_slice_model.wv.key_to_index.items():
        vector_2 = get_word_vector(time_slice_model, word)
        cosine_sim = cosine_similarity(vector_1, vector_2)
        
        if len(nearest_neighbours) < n:
            nearest_neighbours.append((word, model_name, vector_2, cosine_sim))
        else:
            smallest_neighbour = min(nearest_neighbours, key=lambda x: x[3])
            if cosine_sim > smallest_neighbour[3]:
                nearest_neighbours.remove(smallest_neighbour)
                nearest_neighbours.append((word, model_name, vector_2, cosine_sim))
    
    return sorted(nearest_neighbours, key=lambda x: x[3], reverse=True)


def write_to_file(data):
    '''
        Write the data to a file
    '''
    # Create random tmp file name
    temp_file_descriptor, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".txt", dir="/tmp")
    
    os.close(temp_file_descriptor)

    # Write data to the temporary file
    with open(temp_file_path, 'w') as temp_file:
        temp_file.write(str(data))
    
    return temp_file_path


def store_df_in_temp_file(all_dfs):
    '''
        Store the dataframe in a temporary file
    '''
    # Define directory for temporary files
    temp_dir = "./downloads/nn"
    
    # Create the directory if it doesn't exist
    os.makedirs(temp_dir, exist_ok=True)

    # Create random tmp file name
    _, temp_file_path = tempfile.mkstemp(prefix="temp_", suffix=".xlsx", dir=temp_dir)

    
    # Concatenate all dataframes
    df = pd.concat([df for _, df in all_dfs], axis=1, keys=[model for model, _ in all_dfs])


    # Create an ExcelWriter object
    with pd.ExcelWriter(temp_file_path, engine='xlsxwriter') as writer:
        # Create a new sheet
        worksheet = writer.book.add_worksheet('Results')

        # Write text before DataFrames
        start_row = 0
        for model, df in all_dfs:
            # Write model name as text
            worksheet.write(start_row, 0, f"Model: {model}")
            # Write DataFrame
            df.to_excel(writer, sheet_name='Results', index=False, startrow=start_row + 1, startcol=0)
            # Update start_row for the next model
            start_row += df.shape[0] + 3  # Add some space between models

    return temp_file_path



def check_word_in_models(word):
    """
        Check in which models a word occurs.
    """
    all_models = load_all_models()
    eligible_models = []
    
    for model in all_models:
        model_name = convert_time_name_to_model(model[0])
        model = model[1]
        
        if word in model.wv.key_to_index:
            eligible_models.append(model_name)
    
    return eligible_models


def main():
    # model = load_word2vec_model('models/archaic_cbow.model')
    # archaic_cbow_dict = model_dictionary(model)
    
    # score = cosine_similarity(archaic_cbow_dict['Πελοπόννησος'], archaic_cbow_dict['σπάργανον'])
    # print(score)
    
    
    archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
    classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
    early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
    hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
    late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
    
    models = [archaic, classical, early_roman, hellen, late_roman]
    nearest_neighbours = get_nearest_neighbours('πατήρ', 'archaic_cbow', n=5)
    print(nearest_neighbours)
    # vector = get_word_vector(model, 'ἀνήρ')
    # print(vector)

    # Iterate over all words and print their vectors
    # iterate_over_words(model)


if __name__ == "__main__":
    main()