File size: 7,260 Bytes
4a6159c 7de7bf4 5267e7c fc140bc 4a6159c 40debb1 685552c fc140bc f59362a 570b6e4 685552c 40debb1 f59362a fb4cce0 9f55059 4a6159c fc140bc 685552c 4a6159c fc140bc 9f55059 fc140bc 4a6159c f59362a d7ce857 fc140bc d7ce857 f59362a fc140bc 4a6159c f59362a fc140bc 596accd fc140bc 685552c fb4cce0 d7ce857 9f55059 4a6159c 9f55059 7de7bf4 f59362a 9f55059 f59362a 4a6159c f9949bb d7ce857 949b596 d7ce857 f59362a d7ce857 1a4b146 048a702 1a4b146 685552c 1a4b146 3f0df44 570b6e4 4a6159c fc140bc 4a6159c 40debb1 9f55059 40debb1 aa8662e fc140bc 98746bf 8ee6037 4a6159c 9f55059 fc140bc 9f55059 4a6159c 048a702 f9949bb 048a702 685552c 9f55059 fc140bc 9f55059 685552c 048a702 2caced7 4a6159c 685552c 4a6159c 9f55059 d7ce857 4a6159c 1d3978a ce1209f 4a6159c 685552c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from haystack.nodes import TransformersDocumentClassifier
from haystack.schema import Document
from typing import List, Tuple
from typing_extensions import Literal
import logging
import pandas as pd
from pandas import DataFrame, Series
from utils.checkconfig import getconfig
from utils.streamlitcheck import check_streamlit
from utils.preprocessing import processingpipeline
try:
import streamlit as st
except ImportError:
logging.info("Streamlit not installed")
## Labels dictionary ###
_lab_dict = {0: 'no_cat',
1:'SDG 1 - No poverty',
2:'SDG 2 - Zero hunger',
3:'SDG 3 - Good health and well-being',
4:'SDG 4 - Quality education',
5:'SDG 5 - Gender equality',
6:'SDG 6 - Clean water and sanitation',
7:'SDG 7 - Affordable and clean energy',
8:'SDG 8 - Decent work and economic growth',
9:'SDG 9 - Industry, Innovation and Infrastructure',
10:'SDG 10 - Reduced inequality',
11:'SDG 11 - Sustainable cities and communities',
12:'SDG 12 - Responsible consumption and production',
13:'SDG 13 - Climate action',
14:'SDG 14 - Life below water',
15:'SDG 15 - Life on land',
16:'SDG 16 - Peace, justice and strong institutions',
17:'SDG 17 - Partnership for the goals',}
@st.cache(allow_output_mutation=True)
def load_sdgClassifier(config_file:str = None, classifier_name:str = None):
"""
loads the document classifier using haystack, where the name/path of model
in HF-hub as string is used to fetch the model object.Either configfile or
model should be passed.
1. https://docs.haystack.deepset.ai/reference/document-classifier-api
2. https://docs.haystack.deepset.ai/docs/document_classifier
Params
--------
config_file: config file path from which to read the model name
classifier_name: if modelname is passed, it takes a priority if not \
found then will look for configfile, else raise error.
Return: document classifier model
"""
if not classifier_name:
if not config_file:
logging.warning("Pass either model name or config file")
return
else:
config = getconfig(config_file)
classifier_name = config.get('sdg','MODEL')
logging.info("Loading classifier")
doc_classifier = TransformersDocumentClassifier(
model_name_or_path=classifier_name,
task="text-classification")
return doc_classifier
@st.cache(allow_output_mutation=True)
def sdg_classification(haystack_doc:List[Document],
threshold:float = 0.8,
classifier_model:TransformersDocumentClassifier= None
)->Tuple[DataFrame,Series]:
"""
Text-Classification on the list of texts provided. Classifier provides the
most appropriate label for each text. these labels are in terms of if text
belongs to which particular Sustainable Devleopment Goal (SDG).
Params
---------
haystack_doc: List of haystack Documents. The output of Preprocessing Pipeline
contains the list of paragraphs in different format,here the list of
Haystack Documents is used.
threshold: threshold value for the model to keep the results from classifier
classifiermodel: you can pass the classifier model directly,which takes priority
however if not then looks for model in streamlit session.
In case of streamlit avoid passing the model directly.
Returns
----------
df: Dataframe with two columns['SDG:int', 'text']
x: Series object with the unique SDG covered in the document uploaded and
the number of times it is covered/discussed/count_of_paragraphs.
"""
logging.info("Working on SDG Classification")
if not classifier_model:
if check_streamlit():
classifier_model = st.session_state['sdg_classifier']
else:
logging.warning("No streamlit envinornment found, Pass the classifier")
return
results = classifier_model.predict(haystack_doc)
labels_= [(l.meta['classification']['label'],
l.meta['classification']['score'],l.content,) for l in results]
df = DataFrame(labels_, columns=["SDG","Relevancy","text"])
df = df.sort_values(by="Relevancy", ascending=False).reset_index(drop=True)
df.index += 1
df =df[df['Relevancy']>threshold]
# creating the dataframe for value counts of SDG, along with 'title' of SDGs
x = df['SDG'].value_counts()
x = x.rename('count')
x = x.rename_axis('SDG').reset_index()
x["SDG"] = pd.to_numeric(x["SDG"])
x = x.sort_values(by=['count'], ascending=False)
x['SDG_name'] = x['SDG'].apply(lambda x: _lab_dict[x])
x['SDG_Num'] = x['SDG'].apply(lambda x: "SDG "+str(x))
df['SDG'] = pd.to_numeric(df['SDG'])
df = df.sort_values('SDG')
return df, x
def runSDGPreprocessingPipeline(file_name:str, file_path:str,
split_by: Literal["sentence", "word"] = 'sentence',
split_length:int = 2, split_respect_sentence_boundary:bool = False,
split_overlap:int = 0,remove_punc:bool = False)->List[Document]:
"""
creates the pipeline and runs the preprocessing pipeline,
the params for pipeline are fetched from paramconfig
Params
------------
file_name: filename, in case of streamlit application use
st.session_state['filename']
file_path: filepath, in case of streamlit application use st.session_state['filepath']
split_by: document splitting strategy either as word or sentence
split_length: when synthetically creating the paragrpahs from document,
it defines the length of paragraph.
split_respect_sentence_boundary: Used when using 'word' strategy for
splititng of text.
split_overlap: Number of words or sentences that overlap when creating
the paragraphs. This is done as one sentence or 'some words' make sense
when read in together with others. Therefore the overlap is used.
remove_punc: to remove all Punctuation including ',' and '.' or not
Return
--------------
List[Document]: When preprocessing pipeline is run, the output dictionary
has four objects. For the Haysatck implementation of SDG classification we,
need to use the List of Haystack Document, which can be fetched by
key = 'documents' on output.
"""
sdg_processing_pipeline = processingpipeline()
output_sdg_pre = sdg_processing_pipeline.run(file_paths = file_path,
params= {"FileConverter": {"file_path": file_path, \
"file_name": file_name},
"UdfPreProcessor": {"remove_punc": remove_punc, \
"split_by": split_by, \
"split_length":split_length,\
"split_overlap": split_overlap, \
"split_respect_sentence_boundary":split_respect_sentence_boundary}})
return output_sdg_pre
|