Spaces:
GIZ
/
Running on CPU Upgrade

prashant commited on
Commit
98746bf
1 Parent(s): 53e0cf4

updating sdg column to numeric

Browse files
utils/keyword_extraction.py CHANGED
@@ -99,6 +99,7 @@ def textrank(textdata:Text, ratio:float = 0.1, words = 0):
99
  """
100
  wrappper function to perform textrank, uses either ratio or wordcount to
101
  extract top keywords limited by words or ratio.
 
102
 
103
  Params
104
  --------
@@ -109,6 +110,9 @@ def textrank(textdata:Text, ratio:float = 0.1, words = 0):
109
  Non zero. Howevr incase the pagerank returns lesser keywords than \
110
  compared to fix value then ratio is used.
111
 
 
 
 
112
  """
113
  if words == 0:
114
  try:
 
99
  """
100
  wrappper function to perform textrank, uses either ratio or wordcount to
101
  extract top keywords limited by words or ratio.
102
+ 1. https://github.com/summanlp/textrank/blob/master/summa/keywords.py
103
 
104
  Params
105
  --------
 
110
  Non zero. Howevr incase the pagerank returns lesser keywords than \
111
  compared to fix value then ratio is used.
112
 
113
+ Return
114
+ --------
115
+ results: extracted keywords
116
  """
117
  if words == 0:
118
  try:
utils/sdg_classifier.py CHANGED
@@ -99,6 +99,7 @@ def sdg_classification(haystackdoc:List[Document])->Tuple[DataFrame,Series]:
99
  x['SDG_name'] = x['SDG'].apply(lambda x: _lab_dict[x])
100
  x['SDG'] = x['SDG'].apply(lambda x: "SDG "+str(x))
101
  df= df.drop(['Relevancy'], axis = 1)
 
102
 
103
 
104
  return df, x
 
99
  x['SDG_name'] = x['SDG'].apply(lambda x: _lab_dict[x])
100
  x['SDG'] = x['SDG'].apply(lambda x: "SDG "+str(x))
101
  df= df.drop(['Relevancy'], axis = 1)
102
+ df['SDG'] = pd.to_numeric(df['SDG'])
103
 
104
 
105
  return df, x