File size: 11,159 Bytes
5bb13ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baa63a5
 
 
5bb13ab
 
 
 
5dfb73d
5bb13ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07cb6e
 
5bb13ab
 
 
a07cb6e
 
5bb13ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea13ab
 
 
5bb13ab
eea13ab
5bb13ab
8ed8a0a
eea13ab
 
 
 
 
8ed8a0a
 
 
eea13ab
 
 
8ed8a0a
 
 
 
eea13ab
8ed8a0a
 
eea13ab
8ed8a0a
 
 
eea13ab
8ed8a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7c08f
8ed8a0a
 
 
 
 
 
 
0e7c08f
8ed8a0a
eea13ab
 
 
8ed8a0a
3531b28
0e7c08f
8ed8a0a
 
 
 
 
0e7c08f
8ed8a0a
 
 
0e7c08f
8ed8a0a
 
0e7c08f
8ed8a0a
 
 
0e7c08f
8ed8a0a
0e7c08f
8ed8a0a
 
0e7c08f
8ed8a0a
 
 
 
 
 
 
 
 
 
0e7c08f
 
8ed8a0a
 
 
 
 
 
 
0e7c08f
8ed8a0a
 
 
 
91a8fc3
8ed8a0a
 
 
 
0e7c08f
8ed8a0a
 
 
 
 
 
 
 
 
0e7c08f
8ed8a0a
 
 
 
 
0e7c08f
8ed8a0a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# -*- coding: utf-8 -*-
"""Jan_16_In_Class_Assignment_ECE_UW,_PMP_course_LLM_2024.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1W2g1PyBwLNE_P_xlBg9C5BfFxiRDyDa2

# Embeddings and Semantic Search (LLM 2024)

## This in-class coding exercise is to get hands-on with embeddings and one of its obvious application: Semantic Search.

Search is an area that a lot of companies have invested in. Any retail company has a search engine of its own to serve its products. But how many of them include semantics in search? Search is typically done through Tries. But when we bring semantics to search, the ball game entirely changes. Searching with semantics can help address tail queries whereas Trie searches are usually geared for head queries.
One of the bottlenecks in including semantics in search is latency - The more sophisticated the search, the slower the search inference will be. This is why for semantic search, there is no one-stop solution in a real-world scenario. Even though we have ChatGPT to return amazing results with the right prompting, we know what the latency this will incur, thus making it less viable in this scenario :-)
"""





import numpy as np
import requests
import os
import pickle
import streamlit as st

from sentence_transformers import SentenceTransformer

class Embeddings:

  def __init__(self):
    """
    Initialize the class
    """
    self.glove_embeddings_dim = 50


  def download_glove_embeddings(self):
    """
    Download glove embeddings from web or from your gdrive if in optimized format
    """
    embeddings_temp =  "embeddings_50d_temp.npy"
    word_index_temp =    "word_index_dict_50d_temp.pkl"


  def load_glove_embeddings(self, embedding_dimension):
     word_index_temp =     "word_index_dict_50d_temp.pkl"
     embeddings_temp =    "embeddings_50d_temp.npy"

     # Load word index dictionary
     word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")

     # Load embeddings numpy
     embeddings = np.load(embeddings_temp)

     return word_index_dict, embeddings


  def get_glove_embedding(self, word, word_index_dict, embeddings):
        """
        Retrieve GloVe embedding of a specific dimension
        """
        word = word.lower()
        if word in word_index_dict:
            return embeddings[word_index_dict[word]]
        else:
            return np.zeros(self.glove_embeddings_dim)



  def embeddings_preprocess(self, word_index_dict, positive_words, negative_words, embeddings):
        new_embedding = np.zeros(self.glove_embeddings_dim)

        #  for negative words
        for word in negative_words:
            new_embedding -= self.get_glove_embedding(word, word_index_dict, embeddings)

        # for positive words
        for word in positive_words:
            new_embedding += self.get_glove_embedding(word, word_index_dict, embeddings)

        return new_embedding





  def get_sentence_transformer_embedding(self, sentence, transformer_name="all-MiniLM-L6-v2"):
    """
    Encode a sentence using sentence transformer and return embedding
    """

    sentenceTransformer = SentenceTransformer(transformer_name)

    return sentenceTransformer.encode(sentence)



  def get_averaged_glove_embeddings(self, sentence, embeddings_dict):

    words = sentence.split(" ")
    # Initialize an array of zeros for the embedding
    glove_embedding = np.zeros(embeddings_dict['embeddings'].shape[1])

    count_words = 0
    for word in words:
         word = word.lower()  # Convert to lowercase to match the embeddings dictionary
         if word in embeddings_dict['word_index']:
            # Sum up embeddings for each word
             glove_embedding += embeddings_dict['embeddings'][embeddings_dict['word_index'][word]]
             count_words += 1

    if count_words > 0:
        # Average the embeddings
         glove_embedding /= count_words

    return glove_embedding



import numpy.linalg as la
import numpy as np

class Search:

  def __init__(self, embeddings_model):
        self.embeddings_model = embeddings_model


  def cosine_similarity(self, x, y):

    return np.dot(x,y)/max(la.norm(x)*la.norm(y),1e-3)

  def get_topK_similar_categories(self, sentence, categories, top_k=10):
        """Return top K most similar categories to a given sentence."""
        sentence_embedding = self.embeddings_model.get_sentence_transformer_embedding(sentence)
        similarities = {category: self.cosine_similarity(sentence_embedding, category_embedding) for category, category_embedding in categories.items()}
        return dict(sorted(similarities.items(), key=lambda item: item[1], reverse=True)[:top_k])


  def normalize_func(self, vector):
        """Normalize a vector."""
        norm = np.linalg.norm(vector)
        return vector / norm if norm != 0 else vector

  def find_closest_words(self, current_embedding, answer_list, word_index_dict, embeddings):
        """Find closest word from answer_list to current_embedding."""
        highest_similarity, closest_answer = -50, None
        for choice in answer_list:
            choice_embedding = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings)
            similarity = self.cosine_similarity(current_embedding, choice_embedding)
            if similarity > highest_similarity:
                highest_similarity, closest_answer = similarity, choice
        return closest_answer

  def find_word_as(self, current_relation, target_word, answer_list, word_index_dict, embeddings):
        """Find a word analogous to target_word based on current_relation."""
        base_vector_a = self.embeddings_model.get_glove_embedding(current_relation[0], word_index_dict, embeddings)
        base_vector_b = self.embeddings_model.get_glove_embedding(current_relation[1], word_index_dict, embeddings)
        target_vector = self.embeddings_model.get_glove_embedding(target_word, word_index_dict, embeddings)
        ref_difference = self.normalize_func(base_vector_b - base_vector_a)
        answer, highest_similarity = None, -50
        for choice in answer_list:
            choice_vector = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings)
            choice_difference = self.normalize_func(choice_vector - target_vector)
            similarity = self.cosine_similarity(ref_difference, choice_difference)
            if similarity > highest_similarity:
                highest_similarity, answer = similarity, choice
        return answer

  def find_similarity_scores(self, current_embedding, choices, word_index_dict, embeddings):
        """Calculate similarity scores between current_embedding and choices."""
        similarity_scores = {}
        for choice in choices:
            choice_embedding = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings)
            similarity = self.cosine_similarity(current_embedding, choice_embedding)
            similarity_scores[choice] = similarity
        return similarity_scores




import matplotlib.pyplot as plt

def plot_pie_chart(category_simiarity_scores):
    categories = list(category_simiarity_scores.keys())
    cur_similarities = list(category_simiarity_scores.values())

    similarities = [similar / sum(cur_similarities) for similar in cur_similarities]

    fig, ax = plt.subplots()
    ax.pie(similarities, labels=categories,
           autopct="%1.11f%%",
           startangle=90)
    ax.axis('equal')
    plt.show()


def plot_piechart_helper(sorted_cosine_scores_items):
    sorted_cosine_scores = np.array(list(sorted_cosine_scores_items.values()))
    categories_sorted = list(sorted_cosine_scores_items.keys())

    fig, ax = plt.subplots(figsize=(3, 3))
    my_explode = np.zeros(len(categories_sorted))
    my_explode[0] = 0.2
    if len(categories_sorted) == 3:
        my_explode[1] = 0.1
    elif len(categories_sorted) > 3:
        my_explode[2] = 0.05

    ax.pie(
        sorted_cosine_scores,
        labels=categories_sorted,
        autopct="%1.11f%%",
        explode=my_explode,
    )

    return fig



def plot_alatirchart(sorted_cosine_scores_models):
    models = list(sorted_cosine_scores_models.keys())
    tabs = st.tabs(models)
    figs = {}
    for model in models:
        figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])

    for index in range(len(tabs)):
        with tabs[index]:
            st.pyplot(figs[models[index]])


### Text Search ###
st.sidebar.title("sentence transformer")


if 'categories' not in st.session_state:
    st.session_state['categories'] = "Flowers Colors Cars Weather Food"
if 'text_search' not in st.session_state:
    st.session_state['text_search'] = "Roses are red, trucks are blue, and Seattle is grey right now"

embeddings_model = Embeddings()

model_type = "50d"
st.sidebar.write("Model Type: 50d")



st.title("in in-class coding practice1 Demo")
st.subheader(
    "Pass in space separated categories you want this search demo to be about."
)

# categories of user input
user_categories = st.text_input(
    label="Categories", value=st.session_state.categories
)

st.session_state.categories = user_categories.split(" ")

print(st.session_state.get("categories"))

print(type(st.session_state.get("categories")))

st.subheader("Pass in an input word or even a sentence")
user_text_search = st.text_input(
    label="Input your sentence",
    value=st.session_state.text_search,
)

st.session_state.text_search = user_text_search

# Load glove embeddings
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(model_type)

category_embeddings = {category: embeddings_model.get_sentence_transformer_embedding(category) for category in
                       st.session_state.categories}

search_using_cos = Search(embeddings_model)

# Find closest word to an input word
if st.session_state.text_search:
    # sentence transformer embeddings
    print("sentence transformer  Embedding")
    embeddings_metadata = {
        "word_index_dict": word_index_dict,
        "embeddings": embeddings,
        "model_type": model_type,
        "text_search": st.session_state.text_search
    }
    with st.spinner("Obtaining Cosine similarity for Glove..."):
        sorted_cosine_sim_transformer = search_using_cos.get_topK_similar_categories(
            st.session_state.text_search, category_embeddings
        )

        
    # Results and Plot Pie Chart for Glove
    print("Categories are: ", st.session_state.categories)
    st.subheader(
        "Closest word I have between: "
        + " ".join(st.session_state.categories)
        + " as per different Embeddings"
    )

    # print(sorted_cosine_sim_glove)
    print(sorted_cosine_sim_transformer)
    print(list(sorted_cosine_sim_transformer.keys())[0])

    st.write(
        f"Closest category using sentence transformer embeddings : {list(sorted_cosine_sim_transformer.keys())[0]}")

    plot_alatirchart(
        {
            "sentence_transformer_384": sorted_cosine_sim_transformer,
        }
    )


    st.write("")
    st.write(
        "Demo developed by Edward Xu"
    )