Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -276,3 +276,205 @@ Create a simple streamlit or equivalent webapp like the link in 5.
|
|
276 |
This is also part of your Mini-Project 1!
|
277 |
"""
|
278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
This is also part of your Mini-Project 1!
|
277 |
"""
|
278 |
|
279 |
+
def plot_piechart(sorted_cosine_scores_items):
|
280 |
+
sorted_cosine_scores = np.array([
|
281 |
+
sorted_cosine_scores_items[index][1]
|
282 |
+
for index in range(len(sorted_cosine_scores_items))
|
283 |
+
]
|
284 |
+
)
|
285 |
+
categories = st.session_state.categories.split(" ")
|
286 |
+
categories_sorted = [
|
287 |
+
categories[sorted_cosine_scores_items[index][0]]
|
288 |
+
for index in range(len(sorted_cosine_scores_items))
|
289 |
+
]
|
290 |
+
fig, ax = plt.subplots()
|
291 |
+
ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
|
292 |
+
st.pyplot(fig) # Figure
|
293 |
+
|
294 |
+
|
295 |
+
def plot_piechart_helper(sorted_cosine_scores_items):
|
296 |
+
sorted_cosine_scores = np.array(
|
297 |
+
[
|
298 |
+
sorted_cosine_scores_items[index][1]
|
299 |
+
for index in range(len(sorted_cosine_scores_items))
|
300 |
+
]
|
301 |
+
)
|
302 |
+
categories = st.session_state.categories.split(" ")
|
303 |
+
categories_sorted = [
|
304 |
+
categories[sorted_cosine_scores_items[index][0]]
|
305 |
+
for index in range(len(sorted_cosine_scores_items))
|
306 |
+
]
|
307 |
+
fig, ax = plt.subplots(figsize=(3, 3))
|
308 |
+
my_explode = np.zeros(len(categories_sorted))
|
309 |
+
my_explode[0] = 0.2
|
310 |
+
if len(categories_sorted) == 3:
|
311 |
+
my_explode[1] = 0.1 # explode this by 0.2
|
312 |
+
elif len(categories_sorted) > 3:
|
313 |
+
my_explode[2] = 0.05
|
314 |
+
ax.pie(
|
315 |
+
sorted_cosine_scores,
|
316 |
+
labels=categories_sorted,
|
317 |
+
autopct="%1.1f%%",
|
318 |
+
explode=my_explode,
|
319 |
+
)
|
320 |
+
|
321 |
+
return fig
|
322 |
+
|
323 |
+
|
324 |
+
def plot_piecharts(sorted_cosine_scores_models):
|
325 |
+
scores_list = []
|
326 |
+
categories = st.session_state.categories.split(" ")
|
327 |
+
index = 0
|
328 |
+
for model in sorted_cosine_scores_models:
|
329 |
+
scores_list.append(sorted_cosine_scores_models[model])
|
330 |
+
# scores_list[index] = np.array([scores_list[index][ind2][1] for ind2 in range(len(scores_list[index]))])
|
331 |
+
index += 1
|
332 |
+
|
333 |
+
if len(sorted_cosine_scores_models) == 2:
|
334 |
+
fig, (ax1, ax2) = plt.subplots(2)
|
335 |
+
|
336 |
+
categories_sorted = [
|
337 |
+
categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
|
338 |
+
]
|
339 |
+
sorted_scores = np.array(
|
340 |
+
[scores_list[0][index][1] for index in range(len(scores_list[0]))]
|
341 |
+
)
|
342 |
+
ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
343 |
+
|
344 |
+
categories_sorted = [
|
345 |
+
categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
|
346 |
+
]
|
347 |
+
sorted_scores = np.array(
|
348 |
+
[scores_list[1][index][1] for index in range(len(scores_list[1]))]
|
349 |
+
)
|
350 |
+
ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
351 |
+
|
352 |
+
st.pyplot(fig)
|
353 |
+
|
354 |
+
|
355 |
+
def plot_alatirchart(sorted_cosine_scores_models):
|
356 |
+
models = list(sorted_cosine_scores_models.keys())
|
357 |
+
tabs = st.tabs(models)
|
358 |
+
figs = {}
|
359 |
+
for model in models:
|
360 |
+
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])
|
361 |
+
|
362 |
+
for index in range(len(tabs)):
|
363 |
+
with tabs[index]:
|
364 |
+
st.pyplot(figs[models[index]])
|
365 |
+
|
366 |
+
|
367 |
+
### Text Search ###
|
368 |
+
st.sidebar.title("GloVe Twitter")
|
369 |
+
st.sidebar.markdown(
|
370 |
+
"""
|
371 |
+
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
|
372 |
+
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
|
373 |
+
|
374 |
+
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
|
375 |
+
"""
|
376 |
+
)
|
377 |
+
|
378 |
+
# initialize Session State variable
|
379 |
+
if 'categories' not in st.session_state:
|
380 |
+
st.session_state['categories'] = "Flowers Colors Cars Weather Food"
|
381 |
+
if 'text_search' not in st.session_state:
|
382 |
+
st.session_state['text_search'] = "Roses are red, trucks are blue, and Seattle is grey right now"
|
383 |
+
|
384 |
+
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1)
|
385 |
+
|
386 |
+
|
387 |
+
st.title("In Class practice 1 demo")
|
388 |
+
st.subheader(
|
389 |
+
"Pass in space separated categories you want this search demo to be about."
|
390 |
+
)
|
391 |
+
# st.selectbox(label="Pick the categories you want this search demo to be about...",
|
392 |
+
# options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"),
|
393 |
+
# key="categories"
|
394 |
+
# )
|
395 |
+
|
396 |
+
|
397 |
+
# categories of user input
|
398 |
+
categories = st.text_input(
|
399 |
+
label="Categories", value=st.session_state.categories
|
400 |
+
)
|
401 |
+
|
402 |
+
st.session_state.categories = categories.split(" ")
|
403 |
+
|
404 |
+
print(st.session_state.get("categories"))
|
405 |
+
print(type(st.session_state.get("categories")))
|
406 |
+
# print("Categories = ", categories)
|
407 |
+
# st.session_state.categories = categories
|
408 |
+
|
409 |
+
st.subheader("Pass in an input word or even a sentence")
|
410 |
+
text_search = st.text_input(
|
411 |
+
label="Input your sentence",
|
412 |
+
st.session_state.text_search,
|
413 |
+
)
|
414 |
+
|
415 |
+
st.session_state.text_search = text_search
|
416 |
+
|
417 |
+
# Download glove embeddings if it doesn't exist
|
418 |
+
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
|
419 |
+
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
420 |
+
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
|
421 |
+
print("Model type = ", model_type)
|
422 |
+
glove_path = "Data/glove_" + str(model_type) + ".pkl"
|
423 |
+
print("glove_path = ", glove_path)
|
424 |
+
|
425 |
+
# Download embeddings from google drive
|
426 |
+
with st.spinner("Downloading glove embeddings..."):
|
427 |
+
download_glove_embeddings_gdrive(model_type)
|
428 |
+
|
429 |
+
|
430 |
+
# Load glove embeddings
|
431 |
+
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(model_type)
|
432 |
+
|
433 |
+
category_embeddings = {category: embeddings_model.get_sentence_transformer_embedding(category) for category in
|
434 |
+
st.session_state.categories}
|
435 |
+
|
436 |
+
search_using_cos = Search(embeddings_model)
|
437 |
+
|
438 |
+
# Find closest word to an input word
|
439 |
+
if st.session_state.get("text_search"):
|
440 |
+
# sentence transformer Embedding
|
441 |
+
print("sentence transformer Embedding")
|
442 |
+
embeddings_metadata = {
|
443 |
+
"word_index_dict": word_index_dict,
|
444 |
+
"embeddings": embeddings,
|
445 |
+
"model_type": model_type,
|
446 |
+
"text_search": st.session_state.text_search
|
447 |
+
}
|
448 |
+
with st.spinner("Obtaining Cosine similarity ..."):
|
449 |
+
sorted_cosine_sim_transformer = search_using_cos.get_topK_similar_categories(
|
450 |
+
st.session_state.text_search, category_embeddings
|
451 |
+
)
|
452 |
+
|
453 |
+
|
454 |
+
|
455 |
+
# Results and Plot Pie Chart for Glove
|
456 |
+
print("Categories are: ", st.session_state.categories)
|
457 |
+
st.subheader(
|
458 |
+
"Closest word I have between: "
|
459 |
+
+ st.session_state.categories
|
460 |
+
+ " as per different Embeddings"
|
461 |
+
)
|
462 |
+
|
463 |
+
# print(sorted_cosine_sim_glove)
|
464 |
+
print(sorted_cosine_sim_transformer)
|
465 |
+
print(list(sorted_cosine_sim_transformer.keys())[0])
|
466 |
+
|
467 |
+
st.write(
|
468 |
+
f"Closest category using sentence transformer embeddings : {list(sorted_cosine_sim_transformer.keys())[0]}")
|
469 |
+
|
470 |
+
plot_alatirchart(
|
471 |
+
{
|
472 |
+
"sentence_transformer_384": sorted_cosine_sim_transformer,
|
473 |
+
}
|
474 |
+
)
|
475 |
+
|
476 |
+
|
477 |
+
st.write("")
|
478 |
+
st.write(
|
479 |
+
"Demo developed by Edward Xu"
|
480 |
+
)
|