Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -196,29 +196,6 @@ class Search:
|
|
196 |
similarity_scores[choice] = similarity
|
197 |
return similarity_scores
|
198 |
|
199 |
-
"""## 3. Word Arithmetic
|
200 |
-
|
201 |
-
Let's test your embeddings. Answer the question below through the search functionality you implemented above
|
202 |
-
"""
|
203 |
-
|
204 |
-
embeddings_model = Embeddings()
|
205 |
-
search_using_cos = Search(embeddings_model)
|
206 |
-
|
207 |
-
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(50)
|
208 |
-
|
209 |
-
current_embedding = embeddings_model.embeddings_preprocess( word_index_dict, ["king", "woman"], ["man"], embeddings)
|
210 |
-
|
211 |
-
closest_word = search_using_cos.find_closest_words(current_embedding, ["girl", "queen", "princess", "daughter", "mother"], word_index_dict, embeddings )
|
212 |
-
|
213 |
-
print("'King - Man + Woman':", closest_word)
|
214 |
-
|
215 |
-
|
216 |
-
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(50)
|
217 |
-
|
218 |
-
|
219 |
-
closest_word = search_using_cos.find_word_as( ("tesla", "car"), "apple", ["fruit", "vegetable", "gas"], word_index_dict, embeddings)
|
220 |
-
|
221 |
-
print("'Tesla:Car as Apple:?': ", closest_word)
|
222 |
|
223 |
"""## 4. Plots
|
224 |
|
@@ -238,43 +215,9 @@ def plot_pie_chart(category_similarity_scores):
|
|
238 |
ax.axis('equal') # Equal aspect ratio ensures the pie chart is circular.
|
239 |
plt.show()
|
240 |
|
241 |
-
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(50)
|
242 |
-
|
243 |
-
# Find the word closest to the vector resulting from "king" - "man" + "woman"
|
244 |
-
current_embedding = embeddings_model.embeddings_preprocess(word_index_dict, ["king", "woman"], ["man"], embeddings)
|
245 |
-
|
246 |
-
# Calculate similarity scores for a set of words and plot them
|
247 |
-
sim_scores = search_using_cos.find_similarity_scores(current_embedding, ["girl", "queen", "princess", "daughter", "mother"], word_index_dict, embeddings)
|
248 |
-
plot_pie_chart(sim_scores)
|
249 |
-
|
250 |
-
"""## 5. Test
|
251 |
-
|
252 |
-
Test your pie chart against some of the examples in the demo listed here:
|
253 |
-
|
254 |
-
https://categorysearch.streamlit.app or
|
255 |
-
https://searchdemo.streamlit.app
|
256 |
|
257 |
-
a) Do the results make sense?
|
258 |
-
b) Which embedding gives more meaningful results?
|
259 |
|
260 |
-
"""
|
261 |
-
|
262 |
-
input_sentence = "Roses are red, trucks are blue, and Seattle is grey right now"
|
263 |
-
category_names = ["Flowers", "Colors", "Cars", "Weather", "Food"]
|
264 |
-
|
265 |
-
embeddings_model = Embeddings()
|
266 |
-
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(50)
|
267 |
-
categories_embedding = {category: embeddings_model.get_sentence_transformer_embedding(category) for category in category_names}
|
268 |
-
|
269 |
-
search_instance = Search(embeddings_model)
|
270 |
-
category_similarity_scores = search_instance.get_topK_similar_categories(input_sentence, categories_embedding)
|
271 |
|
272 |
-
plot_pie_chart(category_similarity_scores) # Plot and see
|
273 |
-
|
274 |
-
"""## 6. Bonus (if time permits)!
|
275 |
-
Create a simple streamlit or equivalent webapp like the link in 5.
|
276 |
-
This is also part of your Mini-Project 1!
|
277 |
-
"""
|
278 |
|
279 |
def plot_piechart(sorted_cosine_scores_items):
|
280 |
sorted_cosine_scores = np.array([
|
@@ -365,67 +308,41 @@ def plot_alatirchart(sorted_cosine_scores_models):
|
|
365 |
|
366 |
|
367 |
### Text Search ###
|
368 |
-
st.sidebar.title("
|
369 |
-
st.sidebar.markdown(
|
370 |
-
"""
|
371 |
-
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
|
372 |
-
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
|
373 |
|
374 |
-
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
|
375 |
-
"""
|
376 |
-
)
|
377 |
|
378 |
-
# initialize Session State variable
|
379 |
if 'categories' not in st.session_state:
|
380 |
st.session_state['categories'] = "Flowers Colors Cars Weather Food"
|
381 |
if 'text_search' not in st.session_state:
|
382 |
st.session_state['text_search'] = "Roses are red, trucks are blue, and Seattle is grey right now"
|
383 |
|
384 |
-
|
385 |
|
|
|
386 |
|
387 |
-
st.title("
|
388 |
st.subheader(
|
389 |
"Pass in space separated categories you want this search demo to be about."
|
390 |
)
|
391 |
-
# st.selectbox(label="Pick the categories you want this search demo to be about...",
|
392 |
-
# options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"),
|
393 |
-
# key="categories"
|
394 |
-
# )
|
395 |
-
|
396 |
|
397 |
# categories of user input
|
398 |
-
|
399 |
label="Categories", value=st.session_state.categories
|
400 |
)
|
401 |
|
402 |
-
st.session_state.categories =
|
403 |
|
404 |
print(st.session_state.get("categories"))
|
|
|
405 |
print(type(st.session_state.get("categories")))
|
406 |
-
# print("Categories = ", categories)
|
407 |
-
# st.session_state.categories = categories
|
408 |
|
409 |
st.subheader("Pass in an input word or even a sentence")
|
410 |
-
|
411 |
label="Input your sentence",
|
412 |
-
st.session_state.text_search,
|
413 |
)
|
414 |
|
415 |
-
st.session_state.text_search =
|
416 |
-
|
417 |
-
# Download glove embeddings if it doesn't exist
|
418 |
-
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
|
419 |
-
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
420 |
-
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
|
421 |
-
print("Model type = ", model_type)
|
422 |
-
glove_path = "Data/glove_" + str(model_type) + ".pkl"
|
423 |
-
print("glove_path = ", glove_path)
|
424 |
-
|
425 |
-
# Download embeddings from google drive
|
426 |
-
with st.spinner("Downloading glove embeddings..."):
|
427 |
-
download_glove_embeddings_gdrive(model_type)
|
428 |
-
|
429 |
|
430 |
# Load glove embeddings
|
431 |
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(model_type)
|
@@ -436,8 +353,8 @@ category_embeddings = {category: embeddings_model.get_sentence_transformer_embed
|
|
436 |
search_using_cos = Search(embeddings_model)
|
437 |
|
438 |
# Find closest word to an input word
|
439 |
-
if st.session_state.
|
440 |
-
# sentence transformer
|
441 |
print("sentence transformer Embedding")
|
442 |
embeddings_metadata = {
|
443 |
"word_index_dict": word_index_dict,
|
@@ -445,18 +362,16 @@ if st.session_state.get("text_search"):
|
|
445 |
"model_type": model_type,
|
446 |
"text_search": st.session_state.text_search
|
447 |
}
|
448 |
-
with st.spinner("Obtaining Cosine similarity ..."):
|
449 |
sorted_cosine_sim_transformer = search_using_cos.get_topK_similar_categories(
|
450 |
st.session_state.text_search, category_embeddings
|
451 |
)
|
452 |
|
453 |
-
|
454 |
-
|
455 |
# Results and Plot Pie Chart for Glove
|
456 |
print("Categories are: ", st.session_state.categories)
|
457 |
st.subheader(
|
458 |
"Closest word I have between: "
|
459 |
-
+ st.session_state.categories
|
460 |
+ " as per different Embeddings"
|
461 |
)
|
462 |
|
@@ -466,13 +381,13 @@ if st.session_state.get("text_search"):
|
|
466 |
|
467 |
st.write(
|
468 |
f"Closest category using sentence transformer embeddings : {list(sorted_cosine_sim_transformer.keys())[0]}")
|
469 |
-
|
470 |
plot_alatirchart(
|
471 |
{
|
472 |
"sentence_transformer_384": sorted_cosine_sim_transformer,
|
473 |
}
|
474 |
)
|
475 |
-
|
476 |
|
477 |
st.write("")
|
478 |
st.write(
|
|
|
196 |
similarity_scores[choice] = similarity
|
197 |
return similarity_scores
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
"""## 4. Plots
|
201 |
|
|
|
215 |
ax.axis('equal') # Equal aspect ratio ensures the pie chart is circular.
|
216 |
plt.show()
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
|
|
|
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
def plot_piechart(sorted_cosine_scores_items):
|
223 |
sorted_cosine_scores = np.array([
|
|
|
308 |
|
309 |
|
310 |
### Text Search ###
|
311 |
+
st.sidebar.title("sentence transformer")
|
|
|
|
|
|
|
|
|
312 |
|
|
|
|
|
|
|
313 |
|
|
|
314 |
if 'categories' not in st.session_state:
|
315 |
st.session_state['categories'] = "Flowers Colors Cars Weather Food"
|
316 |
if 'text_search' not in st.session_state:
|
317 |
st.session_state['text_search'] = "Roses are red, trucks are blue, and Seattle is grey right now"
|
318 |
|
319 |
+
embeddings_model = Embeddings()
|
320 |
|
321 |
+
model_type = st.sidebar(("50d"), index=1)
|
322 |
|
323 |
+
st.title("in in-class coding practice1 Demo")
|
324 |
st.subheader(
|
325 |
"Pass in space separated categories you want this search demo to be about."
|
326 |
)
|
|
|
|
|
|
|
|
|
|
|
327 |
|
328 |
# categories of user input
|
329 |
+
user_categories = st.text_input(
|
330 |
label="Categories", value=st.session_state.categories
|
331 |
)
|
332 |
|
333 |
+
st.session_state.categories = user_categories.split(" ")
|
334 |
|
335 |
print(st.session_state.get("categories"))
|
336 |
+
|
337 |
print(type(st.session_state.get("categories")))
|
|
|
|
|
338 |
|
339 |
st.subheader("Pass in an input word or even a sentence")
|
340 |
+
user_text_search = st.text_input(
|
341 |
label="Input your sentence",
|
342 |
+
value=st.session_state.text_search,
|
343 |
)
|
344 |
|
345 |
+
st.session_state.text_search = user_text_search
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
# Load glove embeddings
|
348 |
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(model_type)
|
|
|
353 |
search_using_cos = Search(embeddings_model)
|
354 |
|
355 |
# Find closest word to an input word
|
356 |
+
if st.session_state.text_search:
|
357 |
+
# sentence transformer embeddings
|
358 |
print("sentence transformer Embedding")
|
359 |
embeddings_metadata = {
|
360 |
"word_index_dict": word_index_dict,
|
|
|
362 |
"model_type": model_type,
|
363 |
"text_search": st.session_state.text_search
|
364 |
}
|
365 |
+
with st.spinner("Obtaining Cosine similarity for Glove..."):
|
366 |
sorted_cosine_sim_transformer = search_using_cos.get_topK_similar_categories(
|
367 |
st.session_state.text_search, category_embeddings
|
368 |
)
|
369 |
|
|
|
|
|
370 |
# Results and Plot Pie Chart for Glove
|
371 |
print("Categories are: ", st.session_state.categories)
|
372 |
st.subheader(
|
373 |
"Closest word I have between: "
|
374 |
+
+ " ".join(st.session_state.categories)
|
375 |
+ " as per different Embeddings"
|
376 |
)
|
377 |
|
|
|
381 |
|
382 |
st.write(
|
383 |
f"Closest category using sentence transformer embeddings : {list(sorted_cosine_sim_transformer.keys())[0]}")
|
384 |
+
|
385 |
plot_alatirchart(
|
386 |
{
|
387 |
"sentence_transformer_384": sorted_cosine_sim_transformer,
|
388 |
}
|
389 |
)
|
390 |
+
|
391 |
|
392 |
st.write("")
|
393 |
st.write(
|