Spaces:
Running
on
Zero
Running
on
Zero
File size: 104,645 Bytes
2c41ede 0ef1e7a 679c889 a4d55a1 0ef1e7a 4e15520 0ef1e7a 4e15520 a4d55a1 3e0fc3d 4e15520 2de2f9d 305e44a 0ef1e7a 2de2f9d 0ef1e7a b4e520b 8501045 b4e520b 8501045 b4e520b 0ef1e7a b4e520b 8501045 b4e520b 8501045 b4e520b 8501045 b4e520b 8501045 b4e520b 8501045 5ddb4e0 8501045 470297d 8501045 b4e520b 5ddb4e0 b4e520b 470297d b4e520b 470297d e1ccf49 8501045 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 5ddb4e0 b4e520b 676cf64 b4e520b 676cf64 5ddb4e0 b4e520b 676cf64 b4e520b 676cf64 5ddb4e0 b4e520b 676cf64 5ddb4e0 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 0ef1e7a 0d70940 0ef1e7a a17b4f2 9e5eb14 90cc645 244a6a9 90cc645 9e5eb14 0d70940 9e5eb14 1fd2486 9e5eb14 1fd2486 9e5eb14 14b8387 1fd2486 9e5eb14 14b8387 1fd2486 9e5eb14 14b8387 1fd2486 9e5eb14 14b8387 1fd2486 9e5eb14 1fd2486 9e5eb14 14b8387 9e5eb14 14b8387 9e5eb14 1fd2486 9e5eb14 4e15520 9e5eb14 a4d55a1 9e5eb14 4e15520 9e5eb14 4b68d3d 9e5eb14 4b68d3d 9e5eb14 11269b9 4e15520 11269b9 f87b461 11269b9 f87b461 59f8ee9 f87b461 9e5eb14 59f8ee9 9e5eb14 59f8ee9 4e15520 59f8ee9 9e5eb14 4e15520 9e5eb14 59f8ee9 0ef1e7a 9e5eb14 f87b461 59f8ee9 b4e520b f87b461 9e5eb14 f87b461 9e5eb14 f87b461 11269b9 f87b461 9e5eb14 f87b461 9e5eb14 f87b461 9e5eb14 f87b461 9e5eb14 f87b461 9e5eb14 470297d b4e520b 470297d 0ef1e7a 470297d 0ef1e7a 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d 21cf1c2 4e15520 21cf1c2 528719f a4d55a1 528719f b4794a2 528719f 4e15520 528719f 7745d43 4e15520 528719f 9ddc325 4e15520 528719f 305e44a 528719f 9ddc325 0ef1e7a b4e520b 4e15520 b4794a2 528719f 4e15520 a4d55a1 528719f 4e15520 b4794a2 528719f b4794a2 4e15520 528719f b4794a2 4e15520 a4d55a1 4e15520 528719f 4e15520 528719f 4e15520 528719f 4e15520 528719f 4e15520 528719f 4e15520 528719f b4794a2 4e15520 b4794a2 4e15520 528719f 4e15520 b4794a2 4e15520 1a4e64f 528719f 470297d 4e15520 0ef1e7a 470297d 5ddb4e0 470297d 0ef1e7a 470297d 0ef1e7a b4e520b 470297d 5ddb4e0 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d 4e15520 5ddb4e0 4e15520 a4d55a1 4e15520 a4d55a1 4e15520 a4d55a1 4e15520 a4d55a1 4e15520 470297d 4e15520 470297d 4e15520 470297d 4e15520 a4d55a1 4e15520 470297d 4e15520 470297d 4e15520 1fd2c2a 4e15520 1fd2c2a 4e15520 0e8e44e f7be255 4e15520 f7be255 8f98474 4e15520 f7be255 4e15520 f7be255 4e15520 f7be255 0e8e44e f7be255 4e15520 f9ef722 4e15520 6f25d52 f9ef722 2de2f9d 4e15520 f9ef722 f7be255 ddd6290 f7be255 4e15520 f7be255 4e15520 f7be255 0e8e44e ab96cef 4e15520 e5fb6cc 4e15520 16aab35 ba2aa6b 9e5eb14 31c1299 9e5eb14 16aab35 bbd8dfa 16aab35 0d70940 bbd8dfa 16aab35 9e5eb14 bbd8dfa a92fc12 bbd8dfa 10491fa a92fc12 10491fa a92fc12 10491fa a92fc12 10491fa a92fc12 bbd8dfa a92fc12 10491fa a92fc12 10491fa a92fc12 bbd8dfa a92fc12 10491fa a92fc12 10491fa a92fc12 31c1299 a92fc12 10491fa 34259a4 a92fc12 10491fa a92fc12 34259a4 a92fc12 10491fa a92fc12 10491fa a92fc12 10491fa a92fc12 10491fa a92fc12 10491fa a92fc12 10491fa a92fc12 10491fa a92fc12 2660823 10491fa a92fc12 2660823 a92fc12 2660823 a92fc12 2660823 34259a4 2660823 a92fc12 bbd8dfa 31c1299 bbd8dfa ba2aa6b bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa 31c1299 f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 7d130f8 f87b461 bbd8dfa 528719f bbd8dfa 31c1299 bbd8dfa 16aab35 9e5eb14 f87b461 bbd8dfa f87b461 bbd8dfa f87b461 16aab35 f87b461 9e5eb14 f87b461 7d130f8 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa 2660823 bbd8dfa 2660823 31c1299 2660823 bbd8dfa 165cfc3 166f736 bbd8dfa 34259a4 2660823 166f736 bbd8dfa 2660823 bbd8dfa 34259a4 2660823 bbd8dfa 2660823 34259a4 bbd8dfa 2660823 bbd8dfa 34259a4 2660823 34259a4 bbd8dfa 34259a4 2660823 34259a4 bbd8dfa 166f736 34259a4 bbd8dfa ba2aa6b 7d130f8 bbd8dfa 7d130f8 9e5eb14 f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 da76b43 f87b461 da76b43 bbd8dfa f87b461 7d130f8 f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa f87b461 5ae32ee f87b461 2a468d6 f87b461 2a468d6 f87b461 2a468d6 f87b461 2a468d6 f87b461 bbd8dfa f87b461 bbd8dfa f87b461 bbd8dfa 0d70940 306b3c6 f87b461 306b3c6 f87b461 306b3c6 f87b461 2a468d6 f87b461 306b3c6 f87b461 2a468d6 f87b461 2a468d6 f87b461 2a468d6 f87b461 306b3c6 f87b461 306b3c6 17ddc73 306b3c6 bab4e95 306b3c6 bab4e95 306b3c6 bab4e95 da76b43 bab4e95 306b3c6 bab4e95 da76b43 306b3c6 9e5eb14 16aab35 9e5eb14 306b3c6 4e15520 9e5eb14 16aab35 306b3c6 16aab35 306b3c6 ba2aa6b 306b3c6 e5fb6cc bbd8dfa 306b3c6 31c1299 306b3c6 0d70940 306b3c6 bab4e95 fa01404 f87b461 8bd1dbb f87b461 8bd1dbb f87b461 4910c95 f87b461 4910c95 f87b461 4910c95 f87b461 4910c95 f87b461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 |
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback
@dataclass
class UserPreferences:
"""使用者偏好設定的資料結構"""
living_space: str # "apartment", "house_small", "house_large"
yard_access: str # "no_yard", "shared_yard", "private_yard"
exercise_time: int # minutes per day
exercise_type: str # "light_walks", "moderate_activity", "active_training"
grooming_commitment: str # "low", "medium", "high"
experience_level: str # "beginner", "intermediate", "advanced"
time_availability: str # "limited", "moderate", "flexible"
has_children: bool
children_age: str # "toddler", "school_age", "teenager"
noise_tolerance: str # "low", "medium", "high"
space_for_play: bool
other_pets: bool
climate: str # "cold", "moderate", "hot"
health_sensitivity: str = "medium"
barking_acceptance: str = None
size_preference: str = "no_preference" # "no_preference", "small", "medium", "large", "giant"
training_commitment: str = "medium" # "low", "medium", "high" - 訓練投入程度
living_environment: str = "ground_floor" # "ground_floor", "with_elevator", "walk_up" - 居住環境細節
def __post_init__(self):
if self.barking_acceptance is None:
self.barking_acceptance = self.noise_tolerance
def apply_size_filter(breed_score: float, user_preference: str, breed_size: str) -> float:
"""
強過濾機制,基於用戶的體型偏好過濾品種
Parameters:
breed_score (float): 原始品種評分
user_preference (str): 用戶偏好的體型
breed_size (str): 品種的實際體型
Returns:
float: 過濾後的評分,如果體型不符合會返回 0
"""
if user_preference == "no_preference":
return breed_score
# 標準化 size 字串以進行比較
breed_size = breed_size.lower().strip()
user_preference = user_preference.lower().strip()
# 特殊處理 "varies" 的情況
if breed_size == "varies":
return breed_score * 0.5 # 給予一個折扣係數,因為不確定性
# 如果用戶有明確體型偏好但品種不符合,返回 0
if user_preference != breed_size:
return 0
return breed_score
@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
"""計算品種額外加分"""
bonus = 0.0
temperament = breed_info.get('Temperament', '').lower()
# 1. 壽命加分(最高0.05)
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
bonus += longevity_bonus
except:
pass
# 2. 性格特徵加分(最高0.15)
positive_traits = {
'friendly': 0.05,
'gentle': 0.05,
'patient': 0.05,
'intelligent': 0.04,
'adaptable': 0.04,
'affectionate': 0.04,
'easy-going': 0.03,
'calm': 0.03
}
negative_traits = {
'aggressive': -0.08,
'stubborn': -0.06,
'dominant': -0.06,
'aloof': -0.04,
'nervous': -0.05,
'protective': -0.04
}
personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
bonus += max(-0.15, min(0.15, personality_score))
# 3. 適應性加分(最高0.1)
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.05
if 'adaptable' in temperament or 'versatile' in temperament:
adaptability_bonus += 0.05
bonus += min(0.1, adaptability_bonus)
# 4. 家庭相容性(最高0.1)
if user_prefs.has_children:
family_traits = {
'good with children': 0.06,
'patient': 0.05,
'gentle': 0.05,
'tolerant': 0.04,
'playful': 0.03
}
unfriendly_traits = {
'aggressive': -0.08,
'nervous': -0.07,
'protective': -0.06,
'territorial': -0.05
}
# 年齡評估
age_adjustments = {
'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
}
adj = age_adjustments.get(user_prefs.children_age,
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
family_bonus = sum(value for trait, value in family_traits.items()
if trait in temperament) * adj['bonus_mult']
family_penalty = sum(value for trait, value in unfriendly_traits.items()
if trait in temperament) * adj['penalty_mult']
bonus += min(0.15, max(-0.2, family_bonus + family_penalty))
# 5. 專門技能加分(最高0.1)
skill_bonus = 0.0
special_abilities = {
'working': 0.03,
'herding': 0.03,
'hunting': 0.03,
'tracking': 0.03,
'agility': 0.02
}
for ability, value in special_abilities.items():
if ability in temperament.lower():
skill_bonus += value
bonus += min(0.1, skill_bonus)
# 6. 適應性評估
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.08 # 小型犬更適合公寓
# 環境適應性評估
if 'adaptable' in temperament or 'versatile' in temperament:
if user_prefs.living_space == "apartment":
adaptability_bonus += 0.10 # 適應性在公寓環境更重要
else:
adaptability_bonus += 0.05 # 其他環境仍有加分
# 氣候適應性
description = breed_info.get('Description', '').lower()
climate = user_prefs.climate
if climate == 'hot':
if 'heat tolerant' in description or 'warm climate' in description:
adaptability_bonus += 0.08
elif 'thick coat' in description or 'cold climate' in description:
adaptability_bonus -= 0.10
elif climate == 'cold':
if 'thick coat' in description or 'cold climate' in description:
adaptability_bonus += 0.08
elif 'heat tolerant' in description or 'short coat' in description:
adaptability_bonus -= 0.10
bonus += min(0.15, adaptability_bonus)
return min(0.5, max(-0.25, bonus))
@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
"""
計算額外的評估因素,結合品種特性與使用者需求的全面評估系統
1. 多功能性評估 - 品種的多樣化能力
2. 訓練性評估 - 學習和服從能力
3. 能量水平評估 - 活力和運動需求
4. 美容需求評估 - 護理和維護需求
5. 社交需求評估 - 與人互動的需求程度
6. 氣候適應性 - 對環境的適應能力
7. 運動類型匹配 - 與使用者運動習慣的契合度
8. 生活方式適配 - 與使用者日常生活的匹配度
"""
factors = {
'versatility': 0.0, # 多功能性
'trainability': 0.0, # 可訓練度
'energy_level': 0.0, # 能量水平
'grooming_needs': 0.0, # 美容需求
'social_needs': 0.0, # 社交需求
'weather_adaptability': 0.0,# 氣候適應性
'exercise_match': 0.0, # 運動匹配度
'lifestyle_fit': 0.0 # 生活方式適配度
}
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
size = breed_info.get('Size', 'Medium')
# 1. 多功能性評估 - 加強品種用途評估
versatile_traits = {
'intelligent': 0.25,
'adaptable': 0.25,
'trainable': 0.20,
'athletic': 0.15,
'versatile': 0.15
}
working_roles = {
'working': 0.20,
'herding': 0.15,
'hunting': 0.15,
'sporting': 0.15,
'companion': 0.10
}
# 計算特質分數
trait_score = sum(value for trait, value in versatile_traits.items()
if trait in temperament)
# 計算角色分數
role_score = sum(value for role, value in working_roles.items()
if role in description)
# 根據使用者需求調整多功能性評分
purpose_traits = {
'light_walks': ['calm', 'gentle', 'easy-going'],
'moderate_activity': ['adaptable', 'balanced', 'versatile'],
'active_training': ['intelligent', 'trainable', 'working']
}
if user_prefs.exercise_type in purpose_traits:
matching_traits = sum(1 for trait in purpose_traits[user_prefs.exercise_type]
if trait in temperament)
trait_score += matching_traits * 0.15
factors['versatility'] = min(1.0, trait_score + role_score)
# 2. 訓練性評估
trainable_traits = {
'intelligent': 0.3,
'eager to please': 0.3,
'trainable': 0.2,
'quick learner': 0.2,
'obedient': 0.2
}
base_trainability = sum(value for trait, value in trainable_traits.items()
if trait in temperament)
# 根據使用者經驗調整訓練性評分
experience_multipliers = {
'beginner': 1.2, # 新手更需要容易訓練的狗
'intermediate': 1.0,
'advanced': 0.8 # 專家能處理較難訓練的狗
}
factors['trainability'] = min(1.0, base_trainability *
experience_multipliers.get(user_prefs.experience_level, 1.0))
# 3. 能量水平評估
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
energy_levels = {
'VERY HIGH': {
'score': 1.0,
'min_exercise': 120,
'ideal_exercise': 150
},
'HIGH': {
'score': 0.8,
'min_exercise': 90,
'ideal_exercise': 120
},
'MODERATE': {
'score': 0.6,
'min_exercise': 60,
'ideal_exercise': 90
},
'LOW': {
'score': 0.4,
'min_exercise': 30,
'ideal_exercise': 60
}
}
breed_energy = energy_levels.get(exercise_needs, energy_levels['MODERATE'])
# 計算運動時間匹配度
if user_prefs.exercise_time >= breed_energy['ideal_exercise']:
energy_score = breed_energy['score']
else:
# 如果運動時間不足,按比例降低分數
deficit_ratio = max(0.4, user_prefs.exercise_time / breed_energy['ideal_exercise'])
energy_score = breed_energy['score'] * deficit_ratio
factors['energy_level'] = energy_score
# 4. 美容需求評估
grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
grooming_levels = {
'HIGH': 1.0,
'MODERATE': 0.6,
'LOW': 0.3
}
# 特殊毛髮類型評估
coat_adjustments = 0
if 'long coat' in description:
coat_adjustments += 0.2
if 'double coat' in description:
coat_adjustments += 0.15
if 'curly' in description:
coat_adjustments += 0.15
# 根據使用者承諾度調整
commitment_multipliers = {
'low': 1.5, # 低承諾度時加重美容需求的影響
'medium': 1.0,
'high': 0.8 # 高承諾度時降低美容需求的影響
}
base_grooming = grooming_levels.get(grooming_needs, 0.6) + coat_adjustments
factors['grooming_needs'] = min(1.0, base_grooming *
commitment_multipliers.get(user_prefs.grooming_commitment, 1.0))
# 5. 社交需求評估
social_traits = {
'friendly': 0.25,
'social': 0.25,
'affectionate': 0.20,
'people-oriented': 0.20
}
antisocial_traits = {
'independent': -0.20,
'aloof': -0.20,
'reserved': -0.15
}
social_score = sum(value for trait, value in social_traits.items()
if trait in temperament)
antisocial_score = sum(value for trait, value in antisocial_traits.items()
if trait in temperament)
# 家庭情況調整
if user_prefs.has_children:
child_friendly_bonus = 0.2 if 'good with children' in temperament else 0
social_score += child_friendly_bonus
factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
# 6. 氣候適應性評估 - 更細緻的環境適應評估
climate_traits = {
'cold': {
'positive': ['thick coat', 'winter', 'cold climate'],
'negative': ['short coat', 'heat sensitive']
},
'hot': {
'positive': ['short coat', 'heat tolerant', 'warm climate'],
'negative': ['thick coat', 'cold climate']
},
'moderate': {
'positive': ['adaptable', 'all climate'],
'negative': []
}
}
climate_score = 0.4 # 基礎分數
if user_prefs.climate in climate_traits:
# 正面特質加分
climate_score += sum(0.2 for term in climate_traits[user_prefs.climate]['positive']
if term in description)
# 負面特質減分
climate_score -= sum(0.2 for term in climate_traits[user_prefs.climate]['negative']
if term in description)
factors['weather_adaptability'] = min(1.0, max(0.0, climate_score))
# 7. 運動類型匹配評估
exercise_type_traits = {
'light_walks': ['calm', 'gentle'],
'moderate_activity': ['adaptable', 'balanced'],
'active_training': ['athletic', 'energetic']
}
if user_prefs.exercise_type in exercise_type_traits:
match_score = sum(0.25 for trait in exercise_type_traits[user_prefs.exercise_type]
if trait in temperament)
factors['exercise_match'] = min(1.0, match_score + 0.5) # 基礎分0.5
# 8. 生活方式適配評估
lifestyle_score = 0.5 # 基礎分數
# 空間適配
if user_prefs.living_space == 'apartment':
if size == 'Small':
lifestyle_score += 0.2
elif size == 'Large':
lifestyle_score -= 0.2
elif user_prefs.living_space == 'house_large':
if size in ['Large', 'Giant']:
lifestyle_score += 0.2
# 時間可用性適配
time_availability_bonus = {
'limited': -0.1,
'moderate': 0,
'flexible': 0.1
}
lifestyle_score += time_availability_bonus.get(user_prefs.time_availability, 0)
factors['lifestyle_fit'] = min(1.0, max(0.0, lifestyle_score))
return factors
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種與使用者條件的相容性分數"""
try:
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
print(f"Breed info keys: {breed_info.keys()}")
if 'Size' not in breed_info:
print("Missing Size information")
raise KeyError("Size information missing")
if user_prefs.size_preference != "no_preference":
if breed_info['Size'].lower() != user_prefs.size_preference.lower():
return {
'space': 0,
'exercise': 0,
'grooming': 0,
'experience': 0,
'health': 0,
'noise': 0,
'overall': 0,
'adaptability_bonus': 0
}
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
"""
1. 動態的基礎分數矩陣
2. 強化空間品質評估
3. 增加極端情況處理
4. 考慮不同空間組合的協同效應
"""
def get_base_score():
# 基礎分數矩陣 - 更極端的分數分配
base_matrix = {
"Small": {
"apartment": {
"no_yard": 0.85, # 小型犬在公寓仍然適合
"shared_yard": 0.90, # 共享院子提供額外活動空間
"private_yard": 0.95 # 私人院子最理想
},
"house_small": {
"no_yard": 0.80,
"shared_yard": 0.85,
"private_yard": 0.90
},
"house_large": {
"no_yard": 0.75,
"shared_yard": 0.80,
"private_yard": 0.85
}
},
"Medium": {
"apartment": {
"no_yard": 0.75,
"shared_yard": 0.85,
"private_yard": 0.90
},
"house_small": {
"no_yard": 0.80,
"shared_yard": 0.90,
"private_yard": 0.90
},
"house_large": {
"no_yard": 0.85,
"shared_yard": 0.90,
"private_yard": 0.95
}
},
"Large": {
"apartment": {
"no_yard": 0.70,
"shared_yard": 0.80,
"private_yard": 0.85
},
"house_small": {
"no_yard": 0.75,
"shared_yard": 0.85,
"private_yard": 0.90
},
"house_large": {
"no_yard": 0.85,
"shared_yard": 0.90,
"private_yard": 1.0
}
},
"Giant": {
"apartment": {
"no_yard": 0.65,
"shared_yard": 0.75,
"private_yard": 0.80
},
"house_small": {
"no_yard": 0.70,
"shared_yard": 0.80,
"private_yard": 0.85
},
"house_large": {
"no_yard": 0.80,
"shared_yard": 0.90,
"private_yard": 1.0
}
}
}
yard_type = "private_yard" if has_yard else "no_yard"
return base_matrix.get(size, base_matrix["Medium"])[living_space][yard_type]
def calculate_exercise_adjustment():
# 運動需求對空間評分的影響
exercise_impact = {
"Very High": {
"apartment": -0.10,
"house_small": -0.05,
"house_large": 0
},
"High": {
"apartment": -0.08,
"house_small": -0.05,
"house_large": 0
},
"Moderate": {
"apartment": -0.5,
"house_small": -0.02,
"house_large": 0
},
"Low": {
"apartment": 0.10,
"house_small": 0.05,
"house_large": 0
}
}
return exercise_impact.get(exercise_needs, exercise_impact["Moderate"])[living_space]
def calculate_yard_bonus():
# 院子效益評估更加細緻
if not has_yard:
return 0
yard_benefits = {
"Giant": {
"Very High": 0.25,
"High": 0.20,
"Moderate": 0.15,
"Low": 0.10
},
"Large": {
"Very High": 0.20,
"High": 0.15,
"Moderate": 0.10,
"Low": 0.05
},
"Medium": {
"Very High": 0.15,
"High": 0.10,
"Moderate": 0.08,
"Low": 0.05
},
"Small": {
"Very High": 0.10,
"High": 0.08,
"Moderate": 0.05,
"Low": 0.03
}
}
size_benefits = yard_benefits.get(size, yard_benefits["Medium"])
return size_benefits.get(exercise_needs, size_benefits["Moderate"])
def apply_extreme_case_adjustments(score):
# 處理極端情況
if size == "Giant" and living_space == "apartment":
return score * 0.85
if size == "Large" and living_space == "apartment" and exercise_needs == "Very High":
return score * 0.85
if size == "Small" and living_space == "house_large" and exercise_needs == "Low":
return score * 0.9 # 低運動需求的小型犬在大房子可能過於寬敞
return score
# 計算最終分數
base_score = get_base_score()
exercise_adj = calculate_exercise_adjustment()
yard_bonus = calculate_yard_bonus()
# 整合所有評分因素
initial_score = base_score + exercise_adj + yard_bonus
# 應用極端情況調整
final_score = apply_extreme_case_adjustments(initial_score)
# 確保分數在有效範圍內,但允許更極端的結果
return max(0.05, min(1.0, final_score))
def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
"""
計算品種運動需求與使用者運動條件的匹配度。此函數特別著重:
1. 不同品種的運動耐受度差異
2. 運動時間與類型的匹配度
3. 極端運動量的嚴格限制
Parameters:
breed_needs: 品種的運動需求等級
exercise_time: 使用者計劃的運動時間(分鐘)
exercise_type: 運動類型(輕度/中度/高度)
Returns:
float: 0.1到1.0之間的匹配分數
"""
# 定義每個運動需求等級的具體參數
exercise_levels = {
'VERY HIGH': {
'min': 120, # 最低需求
'ideal': 150, # 理想運動量
'max': 180, # 最大建議量
'type_weights': { # 不同運動類型的權重
'active_training': 1.0,
'moderate_activity': 0.6,
'light_walks': 0.3
}
},
'HIGH': {
'min': 90,
'ideal': 120,
'max': 150,
'type_weights': {
'active_training': 0.9,
'moderate_activity': 0.8,
'light_walks': 0.4
}
},
'MODERATE': {
'min': 45,
'ideal': 60,
'max': 90,
'type_weights': {
'active_training': 0.7,
'moderate_activity': 1.0,
'light_walks': 0.8
}
},
'LOW': {
'min': 15,
'ideal': 30,
'max': 45,
'type_weights': {
'active_training': 0.5,
'moderate_activity': 0.8,
'light_walks': 1.0
}
}
}
# 獲取品種的運動參數
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
# 計算時間匹配度
def calculate_time_score():
"""計算運動時間的匹配度,特別處理過度運動的情況"""
if exercise_time < breed_level['min']:
# 運動不足的嚴格懲罰
deficit_ratio = exercise_time / breed_level['min']
return max(0.1, deficit_ratio * 0.4)
elif exercise_time <= breed_level['ideal']:
# 理想範圍內的漸進提升
progress = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
return 0.6 + (progress * 0.4)
elif exercise_time <= breed_level['max']:
# 理想到最大範圍的平緩下降
excess_ratio = (exercise_time - breed_level['ideal']) / (breed_level['max'] - breed_level['ideal'])
return 1.0 - (excess_ratio * 0.2)
else:
# 過度運動的顯著懲罰
excess = (exercise_time - breed_level['max']) / breed_level['max']
# 低運動需求品種的過度運動懲罰更嚴重
penalty_factor = 1.5 if breed_needs.upper() == 'LOW' else 1.0
return max(0.1, 0.8 - (excess * 0.5 * penalty_factor))
# 計算運動類型匹配度
def calculate_type_score():
"""評估運動類型的適合度,考慮品種特性"""
base_type_score = breed_level['type_weights'].get(exercise_type, 0.5)
# 特殊情況處理
if breed_needs.upper() == 'LOW' and exercise_type == 'active_training':
# 低運動需求品種不適合高強度運動
base_type_score *= 0.5
elif breed_needs.upper() == 'VERY HIGH' and exercise_type == 'light_walks':
# 高運動需求品種需要更多強度
base_type_score *= 0.6
return base_type_score
# 計算最終分數
time_score = calculate_time_score()
type_score = calculate_type_score()
# 根據運動需求等級調整權重
if breed_needs.upper() == 'LOW':
# 低運動需求品種更重視運動類型的合適性
final_score = (time_score * 0.6) + (type_score * 0.4)
elif breed_needs.upper() == 'VERY HIGH':
# 高運動需求品種更重視運動時間的充足性
final_score = (time_score * 0.7) + (type_score * 0.3)
else:
final_score = (time_score * 0.65) + (type_score * 0.35)
# 極端情況的最終調整
if breed_needs.upper() == 'LOW' and exercise_time > breed_level['max'] * 2:
# 低運動需求品種的過度運動顯著降分
final_score *= 0.6
elif breed_needs.upper() == 'VERY HIGH' and exercise_time < breed_level['min'] * 0.5:
# 高運動需求品種運動嚴重不足降分
final_score *= 0.5
return max(0.1, min(1.0, final_score))
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
"""
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
"""
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
base_scores = {
"High": {
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數
"medium": 0.65, # 中等承諾仍有挑戰
"high": 1.0 # 高承諾最適合
},
"Moderate": {
"low": 0.45, # 中等需求對低承諾有困難
"medium": 0.85, # 較好的匹配
"high": 0.95 # 高承諾會有餘力
},
"Low": {
"low": 0.90, # 低需求對低承諾很合適
"medium": 0.85, # 略微降低以反映可能過度投入
"high": 0.80 # 可能造成資源浪費
}
}
# 取得基礎分數
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# 根據品種大小調整美容工作量
size_adjustments = {
"Giant": {
"low": -0.35, # 大型犬的美容工作量顯著增加
"medium": -0.20,
"high": -0.10
},
"Large": {
"low": -0.25,
"medium": -0.15,
"high": -0.05
},
"Medium": {
"low": -0.15,
"medium": -0.10,
"high": 0
},
"Small": {
"low": -0.10,
"medium": -0.05,
"high": 0
}
}
# 應用體型調整
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
current_score = base_score + size_adjustment
# 特殊毛髮類型的額外調整
def get_coat_adjustment(breed_description: str, commitment: str) -> float:
"""
評估特殊毛髮類型所需的額外維護工作
"""
adjustments = 0
# 長毛品種需要更多維護
if 'long coat' in breed_description.lower():
coat_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
adjustments += coat_penalties[commitment]
# 雙層毛的品種掉毛量更大
if 'double coat' in breed_description.lower():
double_coat_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += double_coat_penalties[commitment]
# 捲毛品種需要定期專業修剪
if 'curly' in breed_description.lower():
curly_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += curly_penalties[commitment]
return adjustments
# 季節性考量
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
"""
評估季節性掉毛對美容需求的影響
"""
if 'seasonal shedding' in breed_description.lower():
seasonal_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
return seasonal_penalties[commitment]
return 0
# 專業美容需求評估
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
"""
評估需要專業美容服務的影響
"""
if 'professional grooming' in breed_description.lower():
grooming_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
return grooming_penalties[commitment]
return 0
# 應用所有額外調整
# 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整
coat_adjustment = get_coat_adjustment("", user_commitment)
seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
# 確保分數在有意義的範圍內,但允許更大的差異
return max(0.1, min(1.0, final_score))
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
"""
計算使用者經驗與品種需求的匹配分數,更平衡的經驗等級影響
改進重點:
1. 提高初學者的基礎分數
2. 縮小經驗等級間的差距
3. 保持適度的區分度
"""
# 基礎分數矩陣 - 更合理的分數分配
base_scores = {
"High": {
"beginner": 0.55, # 提高起始分,讓新手也有機會
"intermediate": 0.80, # 中級玩家有不錯的勝任能力
"advanced": 0.95 # 資深者幾乎完全勝任
},
"Moderate": {
"beginner": 0.65, # 適中難度對新手更友善
"intermediate": 0.85, # 中級玩家相當適合
"advanced": 0.90 # 資深者完全勝任
},
"Low": {
"beginner": 0.85, # 新手友善品種維持高分
"intermediate": 0.90, # 中級玩家幾乎完全勝任
"advanced": 0.90 # 資深者完全勝任
}
}
# 取得基礎分數
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# 性格評估的權重也需要調整
temperament_lower = temperament.lower()
temperament_adjustments = 0.0
# 根據經驗等級設定不同的特徵評估標準,降低懲罰程度
if user_experience == "beginner":
difficult_traits = {
'stubborn': -0.15, # 降低懲罰程度
'independent': -0.12,
'dominant': -0.12,
'strong-willed': -0.10,
'protective': -0.10,
'aloof': -0.08,
'energetic': -0.08,
'aggressive': -0.20 # 保持較高懲罰,因為安全考慮
}
easy_traits = {
'gentle': 0.08, # 提高獎勵以平衡
'friendly': 0.08,
'eager to please': 0.10,
'patient': 0.08,
'adaptable': 0.08,
'calm': 0.08
}
# 計算特徵調整
for trait, penalty in difficult_traits.items():
if trait in temperament_lower:
temperament_adjustments += penalty
for trait, bonus in easy_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 品種類型特殊評估,降低懲罰程度
if 'terrier' in temperament_lower:
temperament_adjustments -= 0.10 # 降低懲罰
elif 'working' in temperament_lower:
temperament_adjustments -= 0.12
elif 'guard' in temperament_lower:
temperament_adjustments -= 0.12
# 中級和高級玩家的調整保持不變...
elif user_experience == "intermediate":
moderate_traits = {
'stubborn': -0.08,
'independent': -0.05,
'intelligent': 0.10,
'athletic': 0.08,
'versatile': 0.08,
'protective': -0.05
}
for trait, adjustment in moderate_traits.items():
if trait in temperament_lower:
temperament_adjustments += adjustment
else: # advanced
advanced_traits = {
'stubborn': 0.05,
'independent': 0.05,
'intelligent': 0.10,
'protective': 0.05,
'strong-willed': 0.05
}
for trait, bonus in advanced_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 確保最終分數範圍合理
final_score = max(0.15, min(1.0, score + temperament_adjustments))
return final_score
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
1. 根據使用者的健康敏感度調整分數
2. 更嚴格的健康問題評估
3. 考慮多重健康問題的累積效應
4. 加入遺傳疾病的特別考量
"""
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題 - 加重扣分
severe_conditions = {
'hip dysplasia': -0.25, # 髖關節發育不良,影響生活品質
'heart disease': -0.25, # 心臟疾病,需要長期治療
'progressive retinal atrophy': -0.20, # 進行性視網膜萎縮,導致失明
'bloat': -0.22, # 胃扭轉,致命風險
'epilepsy': -0.20, # 癲癇,需要長期藥物控制
'degenerative myelopathy': -0.20, # 脊髓退化,影響行動能力
'von willebrand disease': -0.18 # 血液凝固障礙
}
# 中度健康問題 - 適度扣分
moderate_conditions = {
'allergies': -0.12, # 過敏問題,需要持續關注
'eye problems': -0.15, # 眼睛問題,可能需要手術
'joint problems': -0.15, # 關節問題,影響運動能力
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療
'ear infections': -0.10, # 耳道感染,需要定期清理
'skin issues': -0.12 # 皮膚問題,需要特殊護理
}
# 輕微健康問題 - 輕微扣分
minor_conditions = {
'dental issues': -0.08, # 牙齒問題,需要定期護理
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食
'minor allergies': -0.06, # 輕微過敏,可控制
'seasonal allergies': -0.06 # 季節性過敏
}
# 計算基礎健康分數
health_score = 1.0
# 健康問題累積效應計算
condition_counts = {
'severe': 0,
'moderate': 0,
'minor': 0
}
# 計算各等級健康問題的數量和影響
for condition, penalty in severe_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['severe'] += 1
for condition, penalty in moderate_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['moderate'] += 1
for condition, penalty in minor_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['minor'] += 1
# 多重問題的額外懲罰(累積效應)
if condition_counts['severe'] > 1:
health_score *= (0.85 ** (condition_counts['severe'] - 1))
if condition_counts['moderate'] > 2:
health_score *= (0.90 ** (condition_counts['moderate'] - 2))
# 根據使用者健康敏感度調整分數
sensitivity_multipliers = {
'low': 1.1, # 較不在意健康問題
'medium': 1.0, # 標準評估
'high': 0.85 # 非常注重健康問題
}
health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0)
# 壽命影響評估
try:
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
years = float(lifespan.split('-')[0])
if years < 8:
health_score *= 0.85 # 短壽命顯著降低分數
elif years < 10:
health_score *= 0.92 # 較短壽命輕微降低分數
elif years > 13:
health_score *= 1.1 # 長壽命適度加分
except:
pass
# 特殊健康優勢
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
health_score *= 1.15
elif 'robust health' in health_notes or 'few health issues' in health_notes:
health_score *= 1.1
# 確保分數在合理範圍內,但允許更大的分數差異
return max(0.1, min(1.0, health_score))
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估,很多人棄養就是因為叫聲
"""
if breed_name not in breed_noise_info:
return 0.5
noise_info = breed_noise_info[breed_name]
noise_level = noise_info['noise_level'].lower()
noise_notes = noise_info['noise_notes'].lower()
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
base_scores = {
'low': {
'low': 1.0, # 安靜的狗對低容忍完美匹配
'medium': 0.95, # 安靜的狗對一般容忍很好
'high': 0.90 # 安靜的狗對高容忍當然可以
},
'medium': {
'low': 0.60, # 一般吠叫對低容忍較困難
'medium': 0.90, # 一般吠叫對一般容忍可接受
'high': 0.95 # 一般吠叫對高容忍很好
},
'high': {
'low': 0.25, # 愛叫的狗對低容忍極不適合
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
'high': 0.90 # 愛叫的狗對高容忍可以接受
},
'varies': {
'low': 0.50, # 不確定的情況對低容忍風險較大
'medium': 0.75, # 不確定的情況對一般容忍可嘗試
'high': 0.85 # 不確定的情況對高容忍問題較小
}
}
# 取得基礎分數
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
# 吠叫原因評估,根據環境調整懲罰程度
barking_penalties = {
'separation anxiety': {
'apartment': -0.30, # 在公寓對鄰居影響更大
'house_small': -0.25,
'house_large': -0.20
},
'excessive barking': {
'apartment': -0.25,
'house_small': -0.20,
'house_large': -0.15
},
'territorial': {
'apartment': -0.20, # 在公寓更容易被觸發
'house_small': -0.15,
'house_large': -0.10
},
'alert barking': {
'apartment': -0.15, # 公寓環境刺激較多
'house_small': -0.10,
'house_large': -0.08
},
'attention seeking': {
'apartment': -0.15,
'house_small': -0.12,
'house_large': -0.10
}
}
# 計算環境相關的吠叫懲罰
living_space = user_prefs.living_space
barking_penalty = 0
for trigger, penalties in barking_penalties.items():
if trigger in noise_notes:
barking_penalty += penalties.get(living_space, -0.15)
# 特殊情況評估
special_adjustments = 0
if user_prefs.has_children:
# 孩童年齡相關調整
child_age_adjustments = {
'toddler': {
'high': -0.20, # 幼童對吵鬧更敏感
'medium': -0.15,
'low': -0.05
},
'school_age': {
'high': -0.15,
'medium': -0.10,
'low': -0.05
},
'teenager': {
'high': -0.10,
'medium': -0.05,
'low': -0.02
}
}
# 根據孩童年齡和噪音等級調整
age_adj = child_age_adjustments.get(user_prefs.children_age,
child_age_adjustments['school_age'])
special_adjustments += age_adj.get(noise_level, -0.10)
# 訓練性補償評估
trainability_bonus = 0
if 'responds well to training' in noise_notes:
trainability_bonus = 0.12
elif 'can be trained' in noise_notes:
trainability_bonus = 0.08
elif 'difficult to train' in noise_notes:
trainability_bonus = 0.02
# 夜間吠叫特別考量
if 'night barking' in noise_notes or 'howls' in noise_notes:
if user_prefs.living_space == 'apartment':
special_adjustments -= 0.15
elif user_prefs.living_space == 'house_small':
special_adjustments -= 0.10
else:
special_adjustments -= 0.05
# 計算最終分數,確保更大的分數範圍
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
return max(0.1, min(1.0, final_score))
# 1. 計算基礎分數
print("\n=== 開始計算品種相容性分數 ===")
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
print(f"品種信息: {breed_info}")
print(f"使用者偏好: {vars(user_prefs)}")
# 計算所有基礎分數並整合到字典中
scores = {
'space': calculate_space_score(
breed_info['Size'],
user_prefs.living_space,
user_prefs.yard_access != 'no_yard',
breed_info.get('Exercise Needs', 'Moderate')
),
'exercise': calculate_exercise_score(
breed_info.get('Exercise Needs', 'Moderate'),
user_prefs.exercise_time,
user_prefs.exercise_type
),
'grooming': calculate_grooming_score(
breed_info.get('Grooming Needs', 'Moderate'),
user_prefs.grooming_commitment.lower(),
breed_info['Size']
),
'experience': calculate_experience_score(
breed_info.get('Care Level', 'Moderate'),
user_prefs.experience_level,
breed_info.get('Temperament', '')
),
'health': calculate_health_score(
breed_info.get('Breed', ''),
user_prefs
),
'noise': calculate_noise_score(
breed_info.get('Breed', ''),
user_prefs
)
}
final_score = calculate_breed_compatibility_score(
scores=scores,
user_prefs=user_prefs,
breed_info=breed_info
)
# 計算環境適應性加成
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
# 處理極端情況(新增)
if user_prefs.living_space == "apartment" and breed_info['Size'] in ["Giant", "Large"]:
final_score *= 0.7 # 大型犬在公寓環境下的顯著懲罰
if (breed_info.get('Exercise Needs') == "Very High" and
user_prefs.living_space == "apartment" and
user_prefs.exercise_time < 90):
final_score *= 0.75 # 高運動需求但條件不足的懲罰
# 整合最終分數和加成
combined_score = (final_score * 0.9) + (adaptability_bonus * 0.1)
# 體型過濾
filtered_score = apply_size_filter(
breed_score=combined_score,
user_preference=user_prefs.size_preference,
breed_size=breed_info['Size']
)
final_score = amplify_score_extreme(filtered_score)
# 更新並返回完整的評分結果
scores.update({
'overall': final_score,
'size': breed_info['Size'],
'adaptability_bonus': adaptability_bonus
})
return scores
except Exception as e:
print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
print(f"錯誤類型: {type(e).__name__}")
print(f"錯誤訊息: {str(e)}")
print(f"完整錯誤追蹤:")
print(traceback.format_exc())
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
"""計算品種與環境的適應性加成"""
adaptability_score = 0.0
description = breed_info.get('Description', '').lower()
temperament = breed_info.get('Temperament', '').lower()
# 環境適應性評估
if user_prefs.living_space == 'apartment':
if 'adaptable' in temperament or 'apartment' in description:
adaptability_score += 0.1
if breed_info.get('Size') == 'Small':
adaptability_score += 0.05
elif user_prefs.living_space == 'house_large':
if 'active' in temperament or 'energetic' in description:
adaptability_score += 0.1
# 氣候適應性
if user_prefs.climate in description or user_prefs.climate in temperament:
adaptability_score += 0.05
return min(0.2, adaptability_score)
def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
"""
1. 運動類型與時間的精確匹配
2. 進階使用者的專業需求
3. 空間利用的實際效果
4. 條件組合的嚴格評估
"""
def evaluate_perfect_conditions():
"""
評估條件匹配度,特別強化:
1. 運動類型與時間的綜合評估
2. 專業技能需求評估
3. 品種特性評估
"""
perfect_matches = {
'size_match': 0,
'exercise_match': 0,
'experience_match': 0,
'living_condition_match': 0,
'breed_trait_match': 0 # 新增品種特性匹配度
}
# 第一部分:運動需求評估
def evaluate_exercise_compatibility():
"""
評估運動需求的匹配度,特別關注:
1. 時間與強度的合理搭配
2. 不同品種的運動特性
3. 運動類型的適配性
這個函數就像是一個體育教練,需要根據每個"運動員"(狗品種)的特點,
為他們制定合適的訓練計劃。
"""
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
exercise_time = user_prefs.exercise_time
exercise_type = user_prefs.exercise_type
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
# 定義更精確的品種運動特性
breed_exercise_patterns = {
'sprint_type': { # 短跑型犬種,如 Whippet, Saluki
'identifiers': ['fast', 'speed', 'sprint', 'racing', 'coursing', 'sight hound'],
'ideal_exercise': {
'active_training': 1.0, # 完美匹配高強度訓練
'moderate_activity': 0.5, # 持續運動不是最佳選擇
'light_walks': 0.3 # 輕度運動效果很差
},
'time_ranges': {
'ideal': (30, 60), # 最適合的運動時間範圍
'acceptable': (20, 90), # 可以接受的時間範圍
'penalty_start': 90 # 開始給予懲罰的時間點
},
'penalty_rate': 0.8 # 超出範圍時的懲罰係數
},
'endurance_type': { # 耐力型犬種,如 Border Collie
'identifiers': ['herding', 'working', 'tireless', 'energetic', 'stamina', 'athletic'],
'ideal_exercise': {
'active_training': 0.9, # 高強度訓練很好
'moderate_activity': 1.0, # 持續運動是最佳選擇
'light_walks': 0.4 # 輕度運動不足
},
'time_ranges': {
'ideal': (90, 180), # 需要較長的運動時間
'acceptable': (60, 180),
'penalty_start': 60 # 運動時間過短會受罰
},
'penalty_rate': 0.7
},
'moderate_type': { # 一般活動型犬種,如 Labrador
'identifiers': ['friendly', 'playful', 'adaptable', 'versatile', 'companion'],
'ideal_exercise': {
'active_training': 0.8,
'moderate_activity': 1.0,
'light_walks': 0.6
},
'time_ranges': {
'ideal': (60, 120),
'acceptable': (45, 150),
'penalty_start': 150
},
'penalty_rate': 0.6
}
}
def determine_breed_type():
"""改進品種運動類型的判斷,更精確識別工作犬"""
# 優先檢查特殊運動類型的標識符
for breed_type, pattern in breed_exercise_patterns.items():
if any(identifier in temperament or identifier in description
for identifier in pattern['identifiers']):
return breed_type
# 改進:根據運動需求和工作犬特徵進行更細緻的判斷
if (exercise_needs in ['VERY HIGH', 'HIGH'] or
any(trait in temperament.lower() for trait in
['herding', 'working', 'intelligent', 'athletic', 'tireless'])):
if user_prefs.experience_level == 'advanced':
return 'endurance_type' # 優先判定為耐力型
elif exercise_needs == 'LOW':
return 'moderate_type'
return 'moderate_type'
def calculate_time_match(pattern):
"""
計算運動時間的匹配度。
這就像在判斷運動時間是否符合訓練計劃。
"""
ideal_min, ideal_max = pattern['time_ranges']['ideal']
accept_min, accept_max = pattern['time_ranges']['acceptable']
penalty_start = pattern['time_ranges']['penalty_start']
# 在理想範圍內
if ideal_min <= exercise_time <= ideal_max:
return 1.0
# 超出可接受範圍的嚴格懲罰
elif exercise_time < accept_min:
deficit = accept_min - exercise_time
return max(0.2, 1 - (deficit / accept_min) * 1.2)
elif exercise_time > accept_max:
excess = exercise_time - penalty_start
penalty = min(0.8, (excess / penalty_start) * pattern['penalty_rate'])
return max(0.2, 1 - penalty)
# 在可接受範圍但不在理想範圍
else:
if exercise_time < ideal_min:
progress = (exercise_time - accept_min) / (ideal_min - accept_min)
return 0.6 + (0.4 * progress)
else:
remaining = (accept_max - exercise_time) / (accept_max - ideal_max)
return 0.6 + (0.4 * remaining)
def apply_special_adjustments(time_score, type_score, breed_type, pattern):
"""
處理特殊情況,確保運動方式真正符合品種需求。
特別加強:
1. 短跑型犬種的長時間運動懲罰
2. 耐力型犬種的獎勵機制
3. 運動類型匹配的重要性
"""
# 短跑型品種的特殊處理
if breed_type == 'sprint_type':
if exercise_time > pattern['time_ranges']['penalty_start']:
# 加重長時間運動的懲罰
penalty_factor = min(0.8, (exercise_time - pattern['time_ranges']['penalty_start']) / 60)
time_score *= max(0.3, 1 - penalty_factor) # 最低降到0.3
# 運動類型不適合時的額外懲罰
if exercise_type != 'active_training':
type_score *= 0.3 # 更嚴重的懲罰
# 耐力型品種的特殊處理
elif breed_type == 'endurance_type':
if exercise_time < pattern['time_ranges']['penalty_start']:
time_score *= 0.5 # 維持運動不足的懲罰
elif exercise_time >= 150: # 新增:高運動量獎勵
if exercise_type in ['active_training', 'moderate_activity']:
time_bonus = min(0.3, (exercise_time - 150) / 150)
time_score = min(1.0, time_score * (1 + time_bonus))
type_score = min(1.0, type_score * 1.2)
# 運動強度不足的懲罰
if exercise_type == 'light_walks':
if exercise_time > 90:
type_score *= 0.4 # 加重懲罰
else:
type_score *= 0.5
return time_score, type_score
# 執行評估流程
breed_type = determine_breed_type()
pattern = breed_exercise_patterns[breed_type]
# 計算基礎分數
time_score = calculate_time_match(pattern)
type_score = pattern['ideal_exercise'].get(exercise_type, 0.5)
# 應用特殊調整
time_score, type_score = apply_special_adjustments(time_score, type_score, breed_type, pattern)
# 根據品種類型決定最終權重
if breed_type == 'sprint_type':
if exercise_time > pattern['time_ranges']['penalty_start']:
# 超時時更重視運動類型的匹配度
return (time_score * 0.3) + (type_score * 0.7)
else:
return (time_score * 0.5) + (type_score * 0.5)
elif breed_type == 'endurance_type':
if exercise_time < pattern['time_ranges']['penalty_start']:
# 時間不足時更重視時間因素
return (time_score * 0.7) + (type_score * 0.3)
else:
return (time_score * 0.6) + (type_score * 0.4)
else:
return (time_score * 0.5) + (type_score * 0.5)
# 第二部分:專業技能需求評估
def evaluate_expertise_requirements():
care_level = breed_info.get('Care Level', 'MODERATE').upper()
temperament = breed_info.get('Temperament', '').lower()
# 定義專業技能要求
expertise_requirements = {
'training_complexity': {
'HIGH': {'beginner': 0.3, 'intermediate': 0.7, 'advanced': 1.0},
'MODERATE': {'beginner': 0.6, 'intermediate': 0.9, 'advanced': 1.0},
'LOW': {'beginner': 0.9, 'intermediate': 0.95, 'advanced': 0.9}
},
'special_traits': {
'working': 0.2, # 工作犬需要額外技能
'herding': 0.2, # 牧羊犬需要特殊訓練
'intelligent': 0.15,# 高智商犬種需要心智刺激
'independent': 0.15,# 獨立性強的需要特殊處理
'protective': 0.1 # 護衛犬需要適當訓練
}
}
# 基礎分數
base_score = expertise_requirements['training_complexity'][care_level][user_prefs.experience_level]
# 特殊特徵評估
trait_penalty = 0
for trait, penalty in expertise_requirements['special_traits'].items():
if trait in temperament:
if user_prefs.experience_level == 'beginner':
trait_penalty += penalty
elif user_prefs.experience_level == 'advanced':
trait_penalty -= penalty * 0.5 # 專家反而因應對特殊特徵而加分
return max(0.2, min(1.0, base_score - trait_penalty))
# 第三部分:生活環境評估
# def evaluate_living_conditions():
# size = breed_info['Size']
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
# # 空間需求矩陣
# space_requirements = {
# 'apartment': {
# 'Small': 1.0, 'Medium': 0.4, 'Large': 0.2, 'Giant': 0.1
# },
# 'house_small': {
# 'Small': 0.9, 'Medium': 1.0, 'Large': 0.5, 'Giant': 0.3
# },
# 'house_large': {
# 'Small': 0.8, 'Medium': 0.9, 'Large': 1.0, 'Giant': 1.0
# }
# }
# # 基礎空間分數
# space_score = space_requirements.get(user_prefs.living_space,
# space_requirements['house_small'])[size]
# # 活動空間需求調整
# if exercise_needs in ['HIGH', 'VERY HIGH']:
# if user_prefs.living_space != 'house_large':
# space_score *= 0.8
# # 院子可用性評估
# yard_scores = {
# 'no_yard': 0.7,
# 'shared_yard': 0.85,
# 'private_yard': 1.0
# }
# space_score *= yard_scores.get(user_prefs.yard_access, 0.8)
# return space_score
def evaluate_living_conditions() -> float:
"""
評估生活環境適配性,特別加強:
1. 降低對大型犬的過度懲罰
2. 增加品種特性評估
3. 提升對適應性的重視度
"""
size = breed_info['Size']
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
# 重新定義空間需求矩陣,降低對大型犬的懲罰
space_requirements = {
'apartment': {
'Small': 1.0,
'Medium': 0.7, # 從0.4提升到0.7
'Large': 0.6, # 從0.2提升到0.6
'Giant': 0.5 # 從0.1提升到0.5
},
'house_small': {
'Small': 0.9,
'Medium': 1.0,
'Large': 0.8, # 從0.5提升到0.8
'Giant': 0.7 # 從0.3提升到0.7
},
'house_large': {
'Small': 0.8,
'Medium': 0.9,
'Large': 1.0,
'Giant': 1.0
}
}
# 基礎空間分數
space_score = space_requirements.get(
user_prefs.living_space,
space_requirements['house_small']
)[size]
# 品種適應性評估
adaptability_bonus = 0
adaptable_traits = ['adaptable', 'calm', 'quiet', 'gentle', 'laid-back']
challenging_traits = ['hyperactive', 'restless', 'requires space']
# 計算適應性加分
if user_prefs.living_space == 'apartment':
for trait in adaptable_traits:
if trait in temperament or trait in description:
adaptability_bonus += 0.1
# 特別處理大型犬的適應性
if size in ['Large', 'Giant']:
apartment_friendly_traits = ['calm', 'gentle', 'quiet']
matched_traits = sum(1 for trait in apartment_friendly_traits
if trait in temperament or trait in description)
if matched_traits > 0:
adaptability_bonus += 0.15 * matched_traits
# 活動空間需求調整,更寬容的評估
if exercise_needs in ['HIGH', 'VERY HIGH']:
if user_prefs.living_space != 'house_large':
space_score *= 0.9 # 從0.8提升到0.9,降低懲罰
# 院子可用性評估,提供更合理的獎勵
yard_scores = {
'no_yard': 0.85, # 從0.7提升到0.85
'shared_yard': 0.92, # 從0.85提升到0.92
'private_yard': 1.0
}
yard_multiplier = yard_scores.get(user_prefs.yard_access, 0.85)
# 根據體型調整院子重要性
if size in ['Large', 'Giant']:
yard_importance = 1.2
elif size == 'Medium':
yard_importance = 1.1
else:
yard_importance = 1.0
# 計算最終分數
final_score = space_score * (1 + adaptability_bonus)
# 應用院子影響
if user_prefs.yard_access != 'no_yard':
yard_bonus = (yard_multiplier - 1) * yard_importance
final_score = min(1.0, final_score + yard_bonus)
# 確保分數在合理範圍內,但提供更高的基礎分數
return max(0.4, min(1.0, final_score))
# 第四部分:品種特性評估
def evaluate_breed_traits():
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
trait_scores = []
# 評估性格特徵
if user_prefs.has_children:
if 'good with children' in description:
trait_scores.append(1.0)
elif 'patient' in temperament or 'gentle' in temperament:
trait_scores.append(0.8)
else:
trait_scores.append(0.5)
# 評估適應性
adaptability_keywords = ['adaptable', 'versatile', 'flexible']
if any(keyword in temperament for keyword in adaptability_keywords):
trait_scores.append(1.0)
else:
trait_scores.append(0.7)
return sum(trait_scores) / len(trait_scores) if trait_scores else 0.7
# 計算各項匹配分數
perfect_matches['exercise_match'] = evaluate_exercise_compatibility()
perfect_matches['experience_match'] = evaluate_expertise_requirements()
perfect_matches['living_condition_match'] = evaluate_living_conditions()
perfect_matches['size_match'] = evaluate_living_conditions() # 共用生活環境評估
perfect_matches['breed_trait_match'] = evaluate_breed_traits()
return perfect_matches
def calculate_weights() -> dict:
"""
動態計算評分權重,特別關注:
1. 極端情況的權重調整
2. 使用者條件的協同效應
3. 品種特性的影響
Returns:
dict: 包含各評分項目權重的字典
"""
# 定義基礎權重 - 提供更合理的起始分配
base_weights = {
'space': 0.25, # 提升空間權重,因為這是最基本的需求
'exercise': 0.25, # 運動需求同樣重要
'experience': 0.20, # 保持經驗的重要性
'grooming': 0.10, # 稍微降低美容需求的權重
'noise': 0.10, # 維持噪音評估的權重
'health': 0.10 # 維持健康評估的權重
}
def analyze_condition_extremity() -> dict:
"""
評估使用者條件的極端程度,這影響權重的動態調整。
根據條件的極端程度返回相應的調整建議。
"""
extremities = {}
# 運動時間評估 - 更細緻的分級
if user_prefs.exercise_time <= 30:
extremities['exercise'] = ('extremely_low', 0.8)
elif user_prefs.exercise_time <= 60:
extremities['exercise'] = ('low', 0.6)
elif user_prefs.exercise_time >= 180:
extremities['exercise'] = ('extremely_high', 0.8)
elif user_prefs.exercise_time >= 120:
extremities['exercise'] = ('high', 0.6)
else:
extremities['exercise'] = ('moderate', 0.3)
# 空間限制評估 - 更合理的空間評估
space_extremity = {
'apartment': ('restricted', 0.7), # 從0.9降低到0.7,減少限制
'house_small': ('moderate', 0.5),
'house_large': ('spacious', 0.3)
}
extremities['space'] = space_extremity.get(user_prefs.living_space, ('moderate', 0.5))
# 經驗水平評估 - 保持原有的評估邏輯
experience_extremity = {
'beginner': ('low', 0.7),
'intermediate': ('moderate', 0.4),
'advanced': ('high', 0.6)
}
extremities['experience'] = experience_extremity.get(user_prefs.experience_level, ('moderate', 0.5))
return extremities
def calculate_weight_adjustments(extremities: dict) -> dict:
"""
根據極端程度計算權重調整,特別注意條件組合的影響。
"""
adjustments = {}
temperament = breed_info.get('Temperament', '').lower()
is_working_dog = any(trait in temperament
for trait in ['herding', 'working', 'intelligent', 'tireless'])
# 空間權重調整 - 更平衡的調整方式
if extremities['space'][0] == 'restricted':
if extremities['exercise'][0] in ['high', 'extremely_high']:
adjustments['space'] = 1.5 # 從1.8降低到1.5
adjustments['exercise'] = 1.8 # 從2.5降低到1.8
else:
adjustments['space'] = 1.6 # 從2.5降低到1.6
adjustments['noise'] = 1.5 # 保持合理的噪音權重
# 運動需求權重調整 - 更合理的運動評估
if extremities['exercise'][0] in ['extremely_high', 'extremely_low']:
base_adjustment = 1.8 # 從2.5降低到1.8
if extremities['exercise'][0] == 'extremely_high':
if is_working_dog:
base_adjustment = 2.0 # 從3.0降低到2.0
adjustments['exercise'] = base_adjustment
# 經驗需求權重調整 - 維持原有的評估邏輯
if extremities['experience'][0] == 'low':
adjustments['experience'] = 1.8
if breed_info.get('Care Level') == 'HIGH':
adjustments['experience'] = 2.0
elif extremities['experience'][0] == 'high':
if is_working_dog:
adjustments['experience'] = 1.8 # 從2.5降低到1.8
# 特殊組合的處理
def adjust_for_combinations():
if (extremities['space'][0] == 'restricted' and
extremities['exercise'][0] in ['high', 'extremely_high']):
# 適度降低極端組合的影響
adjustments['space'] = adjustments.get('space', 1.0) * 1.2
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.2
# 理想組合的獎勵
if (extremities['experience'][0] == 'high' and
extremities['space'][0] == 'spacious' and
extremities['exercise'][0] in ['high', 'extremely_high'] and
is_working_dog):
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3
adjustments['experience'] = adjustments.get('experience', 1.0) * 1.3
adjust_for_combinations()
return adjustments
# 獲取條件極端度
extremities = analyze_condition_extremity()
# 計算權重調整
weight_adjustments = calculate_weight_adjustments(extremities)
# 應用權重調整,確保總和為1
final_weights = base_weights.copy()
for key, adjustment in weight_adjustments.items():
if key in final_weights:
final_weights[key] *= adjustment
# 正規化權重
total_weight = sum(final_weights.values())
normalized_weights = {k: v/total_weight for k, v in final_weights.items()}
return normalized_weights
def calculate_weight_adjustments(extremities):
"""
1. 高運動量時對耐力型犬種的偏好
2. 專家級別對工作犬種的偏好
3. 條件組合的整體評估
"""
adjustments = {}
temperament = breed_info.get('Temperament', '').lower()
is_working_dog = any(trait in temperament
for trait in ['herding', 'working', 'intelligent', 'tireless'])
# 空間權重調整邏輯保持不變
if extremities['space'][0] == 'highly_restricted':
if extremities['exercise'][0] in ['high', 'extremely_high']:
adjustments['space'] = 1.8 # 降低空間限制的權重
adjustments['exercise'] = 2.5 # 提高運動能力的權重
else:
adjustments['space'] = 2.5
adjustments['noise'] = 2.0
elif extremities['space'][0] == 'restricted':
adjustments['space'] = 1.8
adjustments['noise'] = 1.5
elif extremities['space'][0] == 'spacious':
adjustments['space'] = 0.8
adjustments['exercise'] = 1.4
# 改進運動需求權重調整
if extremities['exercise'][0] in ['high', 'extremely_high']:
# 提高運動量高時的基礎分數
base_exercise_adjustment = 2.2
if user_prefs.living_space == 'apartment':
base_exercise_adjustment = 2.5 # 特別獎勵公寓住戶的高運動量
adjustments['exercise'] = base_exercise_adjustment
if extremities['exercise'][0] in ['extremely_low', 'extremely_high']:
base_adjustment = 2.5
if extremities['exercise'][0] == 'extremely_high':
if is_working_dog:
base_adjustment = 3.0 # 工作犬在高運動量時獲得更高權重
adjustments['exercise'] = base_adjustment
elif extremities['exercise'][0] in ['low', 'high']:
adjustments['exercise'] = 1.8
# 改進經驗需求權重調整
if extremities['experience'][0] == 'low':
adjustments['experience'] = 2.2
if breed_info.get('Care Level') == 'HIGH':
adjustments['experience'] = 2.5
elif extremities['experience'][0] == 'high':
if is_working_dog:
adjustments['experience'] = 2.5 # 提高專家對工作犬的權重
if extremities['exercise'][0] in ['high', 'extremely_high']:
adjustments['experience'] = 2.8 # 特別強化高運動量工作犬
else:
adjustments['experience'] = 1.8
# 綜合條件影響
def adjust_for_combinations():
# 保持原有的基礎邏輯
if (extremities['space'][0] == 'highly_restricted' and
extremities['exercise'][0] in ['high', 'extremely_high']):
adjustments['space'] = adjustments.get('space', 1.0) * 1.3
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3
# 新增:專家 + 大空間 + 高運動量 + 工作犬的組合
if (extremities['experience'][0] == 'high' and
extremities['space'][0] == 'spacious' and
extremities['exercise'][0] in ['high', 'extremely_high'] and
is_working_dog):
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.4
adjustments['experience'] = adjustments.get('experience', 1.0) * 1.4
if extremities['space'][0] == 'spacious':
for key in ['grooming', 'health', 'noise']:
if key not in adjustments:
adjustments[key] = 1.2
def ensure_minimum_score(score):
if all([
extremities['exercise'][0] in ['high', 'extremely_high'],
breed_matches_exercise_needs(), # 檢查品種是否適合該運動量
score < 0.85
]):
return 0.85
return score
adjust_for_combinations()
return adjustments
# 獲取條件極端度
extremities = analyze_condition_extremity()
# 計算權重調整
weight_adjustments = calculate_weight_adjustments(extremities)
# 應用權重調整
final_weights = base_weights.copy()
for key, adjustment in weight_adjustments.items():
if key in final_weights:
final_weights[key] *= adjustment
return final_weights
def apply_special_case_adjustments(score: float) -> float:
"""
處理特殊情況和極端案例的評分調整。這個函數特別關注:
1. 條件組合的協同效應
2. 品種特性的獨特需求
3. 極端情況的合理處理
這個函數就像是一個細心的裁判,會考慮到各種特殊情況,
並根據具體場景做出合理的評分調整。
Parameters:
score: 初始評分
Returns:
float: 調整後的評分(0.2-1.0之間)
"""
severity_multiplier = 1.0
def evaluate_spatial_exercise_combination() -> float:
"""
評估空間與運動需求的組合效應。
這個函數不再過分懲罰大型犬,而是更多地考慮品種的實際特性。
就像評估一個運動員是否適合在特定場地訓練一樣,我們需要考慮
場地大小和運動需求的整體匹配度。
"""
multiplier = 1.0
if user_prefs.living_space == 'apartment':
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
# 檢查品種是否有利於公寓生活的特徵
apartment_friendly = any(trait in temperament or trait in description
for trait in ['calm', 'adaptable', 'quiet'])
# 大型犬的特殊處理
if breed_info['Size'] in ['Large', 'Giant']:
if apartment_friendly:
multiplier *= 0.85 # 從0.7提升到0.85,降低懲罰
else:
multiplier *= 0.75 # 從0.5提升到0.75
# 檢查運動需求的匹配度
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
exercise_time = user_prefs.exercise_time
if exercise_needs in ['HIGH', 'VERY HIGH']:
if exercise_time >= 120: # 高運動量可以部分補償空間限制
multiplier *= 1.1
return multiplier
def evaluate_experience_combination() -> float:
"""
評估經驗需求的複合影響。
這個函數就像是評估一個工作崗位與應聘者經驗的匹配度,
需要綜合考慮工作難度和應聘者能力。
"""
multiplier = 1.0
temperament = breed_info.get('Temperament', '').lower()
care_level = breed_info.get('Care Level', 'MODERATE')
# 新手飼主的特殊考慮,更寬容的評估標準
if user_prefs.experience_level == 'beginner':
if care_level == 'HIGH':
if user_prefs.has_children:
multiplier *= 0.7 # 從0.5提升到0.7
else:
multiplier *= 0.8 # 從0.6提升到0.8
# 性格特徵影響,降低懲罰程度
challenging_traits = {
'stubborn': -0.10, # 從-0.15降低
'independent': -0.08, # 從-0.12降低
'dominant': -0.08, # 從-0.12降低
'protective': -0.06, # 從-0.10降低
'aggressive': -0.15 # 保持較高懲罰因安全考慮
}
for trait, penalty in challenging_traits.items():
if trait in temperament:
multiplier *= (1 + penalty)
return multiplier
def evaluate_breed_specific_requirements() -> float:
"""
評估品種特定需求。
這個函數就像是為每個品種量身定制評估標準,
考慮其獨特的特性和需求。
"""
multiplier = 1.0
exercise_time = user_prefs.exercise_time
exercise_type = user_prefs.exercise_type
# 檢查品種特性
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
# 運動需求匹配度評估,更合理的標準
if exercise_needs == 'LOW':
if exercise_time > 120:
multiplier *= 0.85 # 從0.5提升到0.85
elif exercise_needs == 'VERY HIGH':
if exercise_time < 60:
multiplier *= 0.7 # 從0.5提升到0.7
# 特殊品種類型的考慮
if 'sprint' in temperament:
if exercise_time > 120 and exercise_type != 'active_training':
multiplier *= 0.85 # 從0.7提升到0.85
if any(trait in temperament for trait in ['working', 'herding']):
if exercise_time < 90 or exercise_type == 'light_walks':
multiplier *= 0.8 # 從0.7提升到0.8
return multiplier
# 計算各項調整
space_exercise_mult = evaluate_spatial_exercise_combination()
experience_mult = evaluate_experience_combination()
breed_specific_mult = evaluate_breed_specific_requirements()
# 整合所有調整因素
severity_multiplier *= space_exercise_mult
severity_multiplier *= experience_mult
severity_multiplier *= breed_specific_mult
# 應用最終調整,確保分數在合理範圍內
final_score = score * severity_multiplier
return max(0.2, min(1.0, final_score))
def calculate_base_score(scores: dict, weights: dict) -> float:
"""
計算基礎評分分數,採用更靈活的評分機制。
這個函數使用了改進後的評分邏輯,主要關注:
1. 降低關鍵指標的最低門檻,使系統更包容
2. 引入非線性評分曲線,讓分數分布更合理
3. 優化多重條件失敗的處理方式
4. 加強對品種特性的考慮
Parameters:
scores: 包含各項評分的字典
weights: 包含各項權重的字典
Returns:
float: 0.2到1.0之間的基礎分數
"""
# 重新定義關鍵指標閾值,提供更寬容的評分標準
critical_thresholds = {
'space': 0.4, # 從0.45降低到0.4
'exercise': 0.4, # 從0.45降低到0.4
'experience': 0.5, # 從0.55降低到0.5
'noise': 0.5 # 保持不變,因為噪音確實是重要考慮因素
}
# 評估關鍵指標失敗情況
def evaluate_critical_failures() -> list:
"""
評估關鍵指標的失敗情況,但採用更寬容的標準。
根據品種特性動態調整失敗判定。
"""
failures = []
temperament = breed_info.get('Temperament', '').lower()
for metric, threshold in critical_thresholds.items():
if scores[metric] < threshold:
# 特殊情況處理:適應性強的品種可以有更低的空間要求
if metric == 'space' and any(trait in temperament
for trait in ['adaptable', 'calm', 'apartment']):
if scores[metric] >= threshold - 0.1:
continue
# 運動需求的特殊處理
elif metric == 'exercise':
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
if exercise_needs == 'LOW' and scores[metric] >= threshold - 0.1:
continue
failures.append((metric, scores[metric]))
return failures
# 計算基礎分數
def calculate_weighted_score() -> float:
"""
計算加權分數,使用非線性函數使分數分布更合理。
"""
weighted_scores = []
for key, score in scores.items():
if key in weights:
# 使用sigmoid函數使分數曲線更平滑
adjusted_score = 1 / (1 + math.exp(-10 * (score - 0.5)))
weighted_scores.append(adjusted_score * weights[key])
return sum(weighted_scores)
# 處理臨界失敗情況
critical_failures = evaluate_critical_failures()
base_score = calculate_weighted_score()
if critical_failures:
# 分離空間和運動相關的懲罰
space_exercise_penalty = 0
other_penalty = 0
for metric, score in critical_failures:
if metric in ['space', 'exercise']:
# 降低空間和運動失敗的懲罰程度
penalty = (critical_thresholds[metric] - score) * 0.12 # 從0.15降低到0.12
space_exercise_penalty += penalty
else:
# 其他失敗的懲罰保持較高
penalty = (critical_thresholds[metric] - score) * 0.25 # 從0.3降低到0.25
other_penalty += penalty
# 計算總懲罰,但使用更溫和的方式
total_penalty = (space_exercise_penalty + other_penalty) / 2
base_score *= (1 - total_penalty)
# 多重失敗的處理更寬容
if len(critical_failures) > 1:
# 從0.98提升到0.99,降低多重失敗的疊加懲罰
base_score *= (0.99 ** (len(critical_failures) - 1))
# 品種特性加分
def apply_breed_bonus() -> float:
"""
根據品種特性提供額外加分,
特別是對於在特定環境下表現良好的品種。
"""
bonus = 0
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
# 適應性加分
adaptability_traits = ['adaptable', 'versatile', 'easy-going']
if any(trait in temperament for trait in adaptability_traits):
bonus += 0.05
# 公寓適應性加分
if user_prefs.living_space == 'apartment':
apartment_traits = ['calm', 'quiet', 'good for apartments']
if any(trait in temperament or trait in description for trait in apartment_traits):
bonus += 0.05
return min(0.1, bonus) # 限制最大加分
# 應用品種特性加分
breed_bonus = apply_breed_bonus()
base_score = min(1.0, base_score * (1 + breed_bonus))
# 確保最終分數在合理範圍內
return max(0.2, min(1.0, base_score))
def evaluate_condition_interactions(scores: dict) -> float:
"""
評估不同條件間的相互影響,更寬容地處理極端組合
"""
interaction_penalty = 1.0
# 只保留最基本的經驗相關評估
if user_prefs.experience_level == 'beginner':
if breed_info.get('Care Level') == 'HIGH':
interaction_penalty *= 0.95
# 運動時間與類型的基本互動也降低懲罰程度
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
if exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks':
interaction_penalty *= 0.95
return interaction_penalty
def calculate_adjusted_perfect_bonus(perfect_conditions: dict) -> float:
"""
計算完美匹配獎勵,但更注重條件的整體表現。
"""
bonus = 1.0
# 降低單項獎勵的影響力
bonus += 0.06 * perfect_conditions['size_match']
bonus += 0.06 * perfect_conditions['exercise_match']
bonus += 0.06 * perfect_conditions['experience_match']
bonus += 0.03 * perfect_conditions['living_condition_match']
# 如果有任何條件表現不佳,降低整體獎勵
low_scores = [score for score in perfect_conditions.values() if score < 0.6]
if low_scores:
bonus *= (0.85 ** len(low_scores))
# 確保獎勵不會過高
return min(1.25, bonus)
def apply_breed_specific_adjustments(score: float) -> float:
"""
根據品種特性進行最終調整。
考慮品種的特殊性質和限制因素。
"""
# 檢查是否存在極端不匹配的情況
exercise_mismatch = False
size_mismatch = False
experience_mismatch = False
# 運動需求極端不匹配
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
if user_prefs.exercise_time < 90 or user_prefs.exercise_type == 'light_walks':
exercise_mismatch = True
# 體型與空間極端不匹配
if user_prefs.living_space == 'apartment' and breed_info['Size'] in ['Large', 'Giant']:
size_mismatch = True
# 經驗需求極端不匹配
if user_prefs.experience_level == 'beginner' and breed_info.get('Care Level') == 'HIGH':
experience_mismatch = True
# 根據不匹配的數量進行懲罰
mismatch_count = sum([exercise_mismatch, size_mismatch, experience_mismatch])
if mismatch_count > 0:
score *= (0.8 ** mismatch_count)
return score
# 計算動態權重
weights = calculate_weights()
# 正規化權重
total_weight = sum(weights.values())
normalized_weights = {k: v/total_weight for k, v in weights.items()}
# 計算基礎分數
base_score = calculate_base_score(scores, normalized_weights)
# 評估條件互動
interaction_multiplier = evaluate_condition_interactions(scores)
# 計算完美匹配獎勵
perfect_conditions = evaluate_perfect_conditions()
perfect_bonus = calculate_adjusted_perfect_bonus(perfect_conditions)
# 計算初步分數
preliminary_score = base_score * interaction_multiplier * perfect_bonus
# 應用品種特定調整
final_score = apply_breed_specific_adjustments(preliminary_score)
# 確保分數在合理範圍內,並降低最高可能分數
max_possible_score = 0.96 # 降低最高可能分數
min_possible_score = 0.3
return min(max_possible_score, max(min_possible_score, final_score))
def amplify_score_extreme(score: float) -> float:
"""
優化分數分布,提供更有意義的評分範圍。
這個函數就像是一個分數校準器,它的作用類似於相機的色彩校準,
讓原始的分數分布能更好地反映實際的匹配程度。比如,一個90分的匹配
應該確實代表一個非常好的搭配,而不是一個僅僅"還可以"的選擇。
我們使用分段函數和平滑曲線來實現這個目標:
- 90-100分代表極佳匹配(映射到96-100)
- 80-90分代表優秀匹配(映射到90-96)
- 70-80分代表良好匹配(映射到82-90)
- 50-70分代表可接受匹配(映射到75-82)
- 50分以下代表較差匹配(映射到70-75)
Parameters:
score: 原始評分(0-1之間的浮點數)
Returns:
float: 調整後的評分(0-1之間的浮點數)
"""
def smooth_curve(x: float, steepness: float = 12) -> float:
"""
創建平滑的S型曲線用於分數轉換。
這個函數使用sigmoid函數來產生平滑的轉換曲線,避免分數在
不同區間之間產生突兀的跳變。就像是在照片編輯中,我們會使用
漸變而不是突變來調整色調。
Parameters:
x: 輸入值(0-1之間)
steepness: 曲線的陡峭程度,越大曲線越陡
Returns:
float: 轉換後的值(0-1之間)
"""
import math
return 1 / (1 + math.exp(-steepness * (x - 0.5)))
def apply_range_mapping(score: float) -> float:
"""
將分數映射到新的範圍,並保持平滑過渡。
這個函數負責將原始分數轉換到新的分數範圍。就像是將溫度從
攝氏度轉換到華氏度,但要保持溫度變化的連續性。
Parameters:
score: 原始分數
Returns:
float: 映射後的分數
"""
# 極佳匹配區間(90-100)
if score >= 0.90:
# 計算在當前區間內的相對位置
position = (score - 0.90) / 0.10
# 映射到96-100的範圍
return 0.96 + (position * 0.04)
# 優秀匹配區間(80-90)
elif score >= 0.80:
position = (score - 0.80) / 0.10
# 使用平滑曲線進行轉換
transition = smooth_curve(position)
return 0.90 + (transition * 0.06)
# 良好匹配區間(70-80)
elif score >= 0.70:
position = (score - 0.70) / 0.10
# 加入輕微的非線性轉換
return 0.82 + (math.pow(position, 0.9) * 0.08)
# 可接受匹配區間(50-70)
elif score >= 0.50:
position = (score - 0.50) / 0.20
# 使用更平緩的曲線
return 0.75 + (smooth_curve(position) * 0.07)
# 較差匹配區間(50以下)
else:
position = score / 0.50
# 確保即使是較低分數也能得到基本分數
return 0.70 + (smooth_curve(position) * 0.05)
def apply_context_bonus(score: float) -> float:
"""
根據具體情況添加額外的分數調整。
這個函數考慮特定的場景來微調分數,就像是考試時會根據題目
的難度來調整給分標準。
Parameters:
score: 當前分數
Returns:
float: 調整後的分數
"""
bonus = 0
# 特殊場景加分
temperament = breed_info.get('Temperament', '').lower()
if user_prefs.living_space == 'apartment':
if 'adaptable' in temperament and score > 0.85:
bonus += 0.02
# 運動需求匹配度加分
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'LOW':
if user_prefs.exercise_time <= 60 and score > 0.85:
bonus += 0.01
return min(1.0, score + bonus)
# 應用基本的範圍映射
adjusted_score = apply_range_mapping(score)
# 應用情境相關的調整
final_score = apply_context_bonus(adjusted_score)
# 確保分數在有效範圍內
return round(min(1.0, max(0.0, final_score)), 4)
# def amplify_score_extreme(score: float) -> float:
# """優化分數分布,提供更高的分數範圍"""
# def smooth_curve(x: float, steepness: float = 12) -> float:
# import math
# return 1 / (1 + math.exp(-steepness * (x - 0.5)))
# if score >= 0.9:
# position = (score - 0.9) / 0.1
# return 0.96 + (position * 0.04) # 90-100的原始分映射到96-100
# elif score >= 0.8:
# position = (score - 0.8) / 0.1
# return 0.90 + (position * 0.06) # 80-90的原始分映射到90-96
# elif score >= 0.7:
# position = (score - 0.7) / 0.1
# return 0.82 + (position * 0.08) # 70-80的原始分映射到82-90
# elif score >= 0.5:
# position = (score - 0.5) / 0.2
# return 0.75 + (smooth_curve(position) * 0.07) # 50-70的原始分映射到75-82
# else:
# position = score / 0.5
# return 0.70 + (smooth_curve(position) * 0.05) # 50以下的原始分映射到70-75 |