Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +593 -396
scoring_calculation_system.py
CHANGED
@@ -1297,15 +1297,13 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1297 |
|
1298 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1299 |
# """
|
1300 |
-
# 1.
|
1301 |
-
# 2.
|
1302 |
-
# 3.
|
|
|
1303 |
# """
|
1304 |
# def evaluate_perfect_conditions():
|
1305 |
-
# """
|
1306 |
-
# 評估條件匹配度,考慮條件間的相互關係。
|
1307 |
-
# 返回的不只是單純的匹配分數,而是綜合了各種條件互相影響後的結果。
|
1308 |
-
# """
|
1309 |
# perfect_matches = {
|
1310 |
# 'size_match': 0,
|
1311 |
# 'exercise_match': 0,
|
@@ -1313,8 +1311,81 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1313 |
# 'living_condition_match': 0
|
1314 |
# }
|
1315 |
|
1316 |
-
# #
|
1317 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1318 |
# 'apartment': {
|
1319 |
# 'Small': 1.0,
|
1320 |
# 'Medium': 0.4,
|
@@ -1324,118 +1395,91 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1324 |
# 'house_small': {
|
1325 |
# 'Small': 0.9,
|
1326 |
# 'Medium': 1.0,
|
1327 |
-
# 'Large': 0.
|
1328 |
-
# 'Giant': 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
1329 |
# }
|
1330 |
# }
|
1331 |
|
1332 |
-
# #
|
1333 |
-
# if
|
1334 |
-
#
|
1335 |
-
#
|
1336 |
-
# if breed_info['Size'] in ['Medium', 'Large']:
|
1337 |
-
# perfect_matches['size_match'] = 0.9
|
1338 |
# else:
|
1339 |
-
#
|
1340 |
-
#
|
1341 |
-
# ).get(breed_info['Size'], 0.5)
|
1342 |
-
|
1343 |
-
# # 運動需求匹配評估,考慮多個相關因素
|
1344 |
-
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1345 |
-
# exercise_time = user_prefs.exercise_time
|
1346 |
-
|
1347 |
-
# # 建立運動時間的基礎評估
|
1348 |
-
# def evaluate_exercise_match():
|
1349 |
-
# # 根據運動需求級別動態計算理想範圍
|
1350 |
-
# exercise_ranges = {
|
1351 |
-
# 'VERY HIGH': (120, 180),
|
1352 |
-
# 'HIGH': (90, 150),
|
1353 |
-
# 'MODERATE': (60, 120),
|
1354 |
-
# 'LOW': (30, 90)
|
1355 |
-
# }
|
1356 |
|
1357 |
-
#
|
1358 |
-
# ideal_range = exercise_ranges.get(exercise_needs, (60, 120))
|
1359 |
-
# min_time, max_time = ideal_range
|
1360 |
-
|
1361 |
-
# # 動態計算匹配度,避免硬性分界
|
1362 |
-
# if min_time <= exercise_time <= max_time:
|
1363 |
-
# base_score = 1.0
|
1364 |
-
# else:
|
1365 |
-
# # 計算與理想範圍的偏差程度
|
1366 |
-
# if exercise_time < min_time:
|
1367 |
-
# deviation = (min_time - exercise_time) / min_time
|
1368 |
-
# else:
|
1369 |
-
# deviation = (exercise_time - max_time) / max_time
|
1370 |
-
# base_score = max(0.3, 1 - deviation)
|
1371 |
-
|
1372 |
-
# return base_score
|
1373 |
-
|
1374 |
-
# # 結合運動時間與其他條件
|
1375 |
-
# exercise_base_score = evaluate_exercise_match()
|
1376 |
-
|
1377 |
-
# # 考慮時間可用性的影響
|
1378 |
-
# time_availability_impact = {
|
1379 |
-
# 'limited': 0.7,
|
1380 |
-
# 'moderate': 0.9,
|
1381 |
-
# 'flexible': 1.0
|
1382 |
-
# }
|
1383 |
-
|
1384 |
-
# # 考慮使用者經驗對運動安排的影響
|
1385 |
-
# experience_impact = {
|
1386 |
-
# 'beginner': 0.8,
|
1387 |
-
# 'intermediate': 0.9,
|
1388 |
-
# 'advanced': 1.0
|
1389 |
-
# }
|
1390 |
|
1391 |
-
# #
|
1392 |
-
# exercise_modifiers = (
|
1393 |
-
# time_availability_impact.get(user_prefs.time_availability, 0.9) *
|
1394 |
-
# experience_impact.get(user_prefs.experience_level, 0.9)
|
1395 |
-
# )
|
1396 |
-
|
1397 |
-
# perfect_matches['exercise_match'] = exercise_base_score * exercise_modifiers
|
1398 |
-
|
1399 |
-
# # 經驗匹配評估,考慮品種難度和其他因素
|
1400 |
# care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1401 |
-
|
1402 |
-
|
1403 |
-
#
|
1404 |
-
#
|
1405 |
-
#
|
1406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1407 |
# }
|
1408 |
|
1409 |
-
# experience_score =
|
1410 |
-
# ).get(user_prefs.experience_level, 0.7)
|
1411 |
|
1412 |
-
# #
|
1413 |
-
# if
|
1414 |
-
#
|
1415 |
-
|
|
|
|
|
|
|
1416 |
# perfect_matches['experience_match'] = experience_score
|
1417 |
-
|
1418 |
# # 生活條件整體評估
|
1419 |
# living_score = 1.0
|
1420 |
|
1421 |
-
# #
|
1422 |
# if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
1423 |
# yard_impacts = {
|
1424 |
-
# 'no_yard': 0.
|
1425 |
-
# 'shared_yard': 0.
|
1426 |
# 'private_yard': 1.0
|
1427 |
# }
|
1428 |
-
# living_score *= yard_impacts.get(user_prefs.yard_access, 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1429 |
|
1430 |
# perfect_matches['living_condition_match'] = living_score
|
1431 |
|
1432 |
# return perfect_matches
|
1433 |
|
1434 |
# def calculate_weights():
|
1435 |
-
# """
|
1436 |
-
# 計算動態權重,根據條件的極端程度自動調整各項評分的重要性
|
1437 |
-
# """
|
1438 |
-
# # 基礎權重設定
|
1439 |
# base_weights = {
|
1440 |
# 'space': 0.20,
|
1441 |
# 'exercise': 0.20,
|
@@ -1445,49 +1489,60 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1445 |
# 'health': 0.10
|
1446 |
# }
|
1447 |
|
1448 |
-
# #
|
1449 |
-
# def
|
1450 |
# extremities = {}
|
1451 |
|
1452 |
-
# #
|
1453 |
# if user_prefs.exercise_time < 30:
|
1454 |
-
# extremities['exercise'] = ('
|
|
|
|
|
1455 |
# elif user_prefs.exercise_time > 150:
|
1456 |
-
# extremities['exercise'] = ('
|
|
|
|
|
1457 |
# else:
|
1458 |
-
# extremities['exercise'] = ('
|
1459 |
|
1460 |
-
# #
|
1461 |
# if user_prefs.living_space == 'apartment':
|
1462 |
-
# extremities['space'] = ('
|
1463 |
-
# elif user_prefs.living_space == '
|
1464 |
-
# extremities['space'] = ('
|
1465 |
# else:
|
1466 |
-
# extremities['space'] = ('
|
1467 |
|
1468 |
# return extremities
|
1469 |
|
1470 |
-
# extremities =
|
1471 |
|
1472 |
-
# #
|
1473 |
# weight_adjustments = {}
|
1474 |
|
1475 |
-
# #
|
1476 |
-
# if extremities['space'][0] == '
|
1477 |
# weight_adjustments['space'] = 3.0
|
1478 |
-
# weight_adjustments['noise'] = 2.
|
1479 |
-
# elif extremities['space'][0] == '
|
1480 |
-
# weight_adjustments['space'] = 0
|
1481 |
-
# weight_adjustments['
|
|
|
|
|
|
|
1482 |
|
1483 |
-
# #
|
1484 |
-
# if extremities['exercise'][0] in ['
|
1485 |
-
# weight_adjustments['exercise'] =
|
|
|
|
|
1486 |
|
1487 |
-
# #
|
1488 |
# if user_prefs.experience_level == 'beginner':
|
|
|
|
|
1489 |
# weight_adjustments['experience'] = 2.0
|
1490 |
-
|
1491 |
# # 應用權重調整
|
1492 |
# final_weights = base_weights.copy()
|
1493 |
# for key, adjustment in weight_adjustments.items():
|
@@ -1496,31 +1551,38 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1496 |
# return final_weights
|
1497 |
|
1498 |
# def apply_special_case_adjustments(score):
|
1499 |
-
# """
|
1500 |
-
# 處理特殊情況,考慮條件組合產生的效果
|
1501 |
-
# """
|
1502 |
-
# # 評估條件組合的嚴重程度
|
1503 |
# severity = 1.0
|
1504 |
|
1505 |
-
# #
|
1506 |
# if user_prefs.living_space == 'apartment':
|
1507 |
# if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
|
|
|
|
|
1508 |
# severity *= 0.6
|
1509 |
-
#
|
1510 |
-
# severity *= 0.
|
1511 |
|
1512 |
-
# #
|
1513 |
# if user_prefs.experience_level == 'beginner':
|
1514 |
# if breed_info.get('Care Level') == 'HIGH':
|
1515 |
# if user_prefs.has_children:
|
1516 |
-
# severity *= 0.
|
1517 |
# else:
|
1518 |
-
# severity *= 0.
|
1519 |
|
1520 |
-
# #
|
1521 |
# if user_prefs.time_availability == 'limited':
|
1522 |
-
# if breed_info.get('Exercise Needs').upper() in ['HIGH', '
|
1523 |
-
# severity *= 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1524 |
|
1525 |
# return score * severity
|
1526 |
|
@@ -1537,18 +1599,20 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1537 |
# # 計算基礎分數
|
1538 |
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1539 |
|
1540 |
-
# #
|
1541 |
# perfect_bonus = 1.0
|
1542 |
-
# perfect_bonus += 0.
|
1543 |
-
# perfect_bonus += 0.
|
1544 |
-
# perfect_bonus += 0.
|
1545 |
-
# perfect_bonus += 0.
|
1546 |
|
1547 |
-
# #
|
1548 |
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1549 |
|
1550 |
-
# #
|
1551 |
-
# final_score = (base_score * 0.
|
|
|
|
|
1552 |
# final_score = apply_special_case_adjustments(final_score)
|
1553 |
|
1554 |
# return min(1.0, final_score)
|
@@ -1562,183 +1626,205 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1562 |
4. 條件組合的嚴格評估
|
1563 |
"""
|
1564 |
def evaluate_perfect_conditions():
|
1565 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
1566 |
perfect_matches = {
|
1567 |
'size_match': 0,
|
1568 |
'exercise_match': 0,
|
1569 |
'experience_match': 0,
|
1570 |
-
'living_condition_match': 0
|
|
|
1571 |
}
|
1572 |
|
1573 |
-
#
|
1574 |
-
|
1575 |
-
|
1576 |
-
|
1577 |
-
|
1578 |
-
|
1579 |
-
|
1580 |
-
|
1581 |
-
|
1582 |
-
'
|
1583 |
-
|
1584 |
-
'
|
1585 |
-
'
|
1586 |
-
|
1587 |
-
|
1588 |
-
|
1589 |
-
|
1590 |
-
|
1591 |
-
'
|
1592 |
-
'
|
1593 |
-
'
|
1594 |
-
|
1595 |
-
|
1596 |
-
|
1597 |
-
|
1598 |
-
|
1599 |
-
|
1600 |
-
|
1601 |
-
'
|
1602 |
-
|
1603 |
-
|
1604 |
-
|
1605 |
-
|
1606 |
-
|
1607 |
-
|
1608 |
-
'ideal': (30, 60),
|
1609 |
-
'acceptable': (15, 90)
|
1610 |
}
|
1611 |
}
|
1612 |
-
|
1613 |
-
|
1614 |
-
|
1615 |
-
|
1616 |
-
|
1617 |
-
|
1618 |
-
|
1619 |
-
|
1620 |
-
|
1621 |
-
|
1622 |
-
|
1623 |
-
#
|
1624 |
-
if exercise_time
|
1625 |
-
|
|
|
|
|
1626 |
else:
|
1627 |
-
|
1628 |
-
|
1629 |
-
|
1630 |
-
|
1631 |
-
|
1632 |
-
|
1633 |
-
|
1634 |
-
|
1635 |
-
|
1636 |
-
|
1637 |
-
|
1638 |
-
|
1639 |
-
|
1640 |
-
|
1641 |
-
|
1642 |
-
type_score
|
|
|
|
|
|
|
|
|
|
|
1643 |
|
1644 |
-
|
1645 |
-
|
1646 |
-
|
1647 |
-
|
1648 |
-
|
1649 |
-
|
1650 |
-
|
1651 |
-
'
|
1652 |
-
|
1653 |
-
|
1654 |
-
|
1655 |
-
|
1656 |
-
|
1657 |
-
|
1658 |
-
'Giant': 0.3
|
1659 |
-
},
|
1660 |
-
'house_large': {
|
1661 |
-
'Small': 0.7,
|
1662 |
-
'Medium': 0.9,
|
1663 |
-
'Large': 1.0,
|
1664 |
-
'Giant': 0.95
|
1665 |
}
|
1666 |
-
|
1667 |
-
|
1668 |
-
|
1669 |
-
|
1670 |
-
|
1671 |
-
|
1672 |
-
|
1673 |
-
|
1674 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1675 |
|
1676 |
-
|
1677 |
-
|
1678 |
-
|
1679 |
-
|
1680 |
-
|
1681 |
-
|
1682 |
-
|
1683 |
-
|
1684 |
-
|
1685 |
-
|
1686 |
-
|
1687 |
-
experience_matrix = {
|
1688 |
-
'HIGH': {
|
1689 |
-
'beginner': 0.2, # 更嚴格的新手限制
|
1690 |
-
'intermediate': 0.6,
|
1691 |
-
'advanced': 1.0
|
1692 |
-
},
|
1693 |
-
'MODERATE': {
|
1694 |
-
'beginner': 0.5,
|
1695 |
-
'intermediate': 0.9,
|
1696 |
-
'advanced': 0.95
|
1697 |
-
},
|
1698 |
-
'LOW': {
|
1699 |
-
'beginner': 0.9,
|
1700 |
-
'intermediate': 0.85,
|
1701 |
-
'advanced': 0.8 # 對專家稍微降低簡單品種的分數
|
1702 |
}
|
1703 |
-
|
1704 |
-
|
1705 |
-
|
1706 |
-
|
1707 |
-
|
1708 |
-
|
1709 |
-
if
|
1710 |
-
|
1711 |
-
|
1712 |
-
|
1713 |
-
|
1714 |
-
|
1715 |
-
|
1716 |
-
|
1717 |
-
living_score = 1.0
|
1718 |
-
|
1719 |
-
# 院子影響的嚴格評估
|
1720 |
-
if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
1721 |
-
yard_impacts = {
|
1722 |
-
'no_yard': 0.5, # 更嚴格的懲罰
|
1723 |
-
'shared_yard': 0.7,
|
1724 |
'private_yard': 1.0
|
1725 |
}
|
1726 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1727 |
|
1728 |
-
|
1729 |
-
|
1730 |
-
|
1731 |
-
|
1732 |
-
|
1733 |
-
|
1734 |
-
|
1735 |
-
|
1736 |
-
|
1737 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1738 |
return perfect_matches
|
1739 |
|
1740 |
def calculate_weights():
|
1741 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
1742 |
base_weights = {
|
1743 |
'space': 0.20,
|
1744 |
'exercise': 0.20,
|
@@ -1748,102 +1834,211 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1748 |
'health': 0.10
|
1749 |
}
|
1750 |
|
1751 |
-
|
1752 |
-
|
1753 |
extremities = {}
|
1754 |
|
1755 |
-
#
|
1756 |
-
|
1757 |
-
|
1758 |
-
|
1759 |
-
|
1760 |
-
|
1761 |
-
|
1762 |
-
|
1763 |
-
|
1764 |
-
|
1765 |
-
|
1766 |
-
|
1767 |
-
#
|
1768 |
-
|
1769 |
-
|
1770 |
-
|
1771 |
-
|
1772 |
-
|
1773 |
-
|
1774 |
-
|
1775 |
-
|
1776 |
-
|
1777 |
-
|
1778 |
-
|
1779 |
-
|
1780 |
-
|
1781 |
-
|
1782 |
-
|
1783 |
-
|
1784 |
-
|
1785 |
-
|
1786 |
-
|
1787 |
-
|
1788 |
-
|
1789 |
-
elif extremities['space'][0] == 'spacious':
|
1790 |
-
weight_adjustments['space'] = 0.7 # 大空間時降低空間權重
|
1791 |
-
weight_adjustments['exercise'] = 1.5 # 提升運動重要性
|
1792 |
-
|
1793 |
-
# 運動需求權重調整
|
1794 |
-
if extremities['exercise'][0] in ['very_low', 'very_high']:
|
1795 |
-
weight_adjustments['exercise'] = 3.0
|
1796 |
-
elif extremities['exercise'][0] in ['low', 'high']:
|
1797 |
-
weight_adjustments['exercise'] = 2.0
|
1798 |
|
1799 |
-
|
1800 |
-
|
1801 |
-
|
1802 |
-
|
1803 |
-
|
1804 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1805 |
# 應用權重調整
|
1806 |
final_weights = base_weights.copy()
|
1807 |
for key, adjustment in weight_adjustments.items():
|
1808 |
-
|
1809 |
-
|
|
|
1810 |
return final_weights
|
1811 |
|
1812 |
def apply_special_case_adjustments(score):
|
1813 |
-
"""
|
1814 |
-
|
1815 |
-
|
1816 |
-
|
1817 |
-
|
1818 |
-
|
1819 |
-
|
1820 |
-
|
1821 |
-
|
1822 |
-
|
1823 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1824 |
|
1825 |
-
|
1826 |
-
|
1827 |
-
|
1828 |
-
|
1829 |
-
|
1830 |
-
|
1831 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1832 |
|
1833 |
-
|
1834 |
-
|
1835 |
-
|
1836 |
-
|
1837 |
-
|
1838 |
-
|
1839 |
-
|
1840 |
-
|
1841 |
-
|
1842 |
-
|
1843 |
-
|
1844 |
-
|
1845 |
-
|
1846 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1847 |
|
1848 |
# 評估完美匹配條件
|
1849 |
perfect_conditions = evaluate_perfect_conditions()
|
@@ -1851,30 +2046,32 @@ def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreference
|
|
1851 |
# 計算動態權重
|
1852 |
weights = calculate_weights()
|
1853 |
|
1854 |
-
#
|
1855 |
total_weight = sum(weights.values())
|
1856 |
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
1857 |
|
1858 |
# 計算基礎分數
|
1859 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1860 |
|
1861 |
-
#
|
1862 |
perfect_bonus = 1.0
|
1863 |
-
perfect_bonus += 0.
|
1864 |
-
perfect_bonus += 0.
|
1865 |
-
perfect_bonus += 0.
|
1866 |
-
perfect_bonus += 0.
|
|
|
1867 |
|
1868 |
-
#
|
1869 |
-
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1870 |
|
1871 |
-
#
|
1872 |
-
|
1873 |
|
1874 |
# 應用特殊情況調整
|
1875 |
-
final_score = apply_special_case_adjustments(
|
1876 |
|
1877 |
-
|
|
|
1878 |
|
1879 |
|
1880 |
def amplify_score_extreme(score: float) -> float:
|
|
|
1297 |
|
1298 |
# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
|
1299 |
# """
|
1300 |
+
# 1. 運動類型與時間的精確匹配
|
1301 |
+
# 2. 進階使用者的專業需求
|
1302 |
+
# 3. 空間利用的實際效果
|
1303 |
+
# 4. 條件組合的嚴格評估
|
1304 |
# """
|
1305 |
# def evaluate_perfect_conditions():
|
1306 |
+
# """評估條件匹配度,特別強化運動類型與專業程度的評估"""
|
|
|
|
|
|
|
1307 |
# perfect_matches = {
|
1308 |
# 'size_match': 0,
|
1309 |
# 'exercise_match': 0,
|
|
|
1311 |
# 'living_condition_match': 0
|
1312 |
# }
|
1313 |
|
1314 |
+
# # 運動類型與需求的精確匹配
|
1315 |
+
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1316 |
+
# exercise_time = user_prefs.exercise_time
|
1317 |
+
# exercise_type = user_prefs.exercise_type
|
1318 |
+
|
1319 |
+
# # 定義品種的理想運動模式
|
1320 |
+
# breed_exercise_preferences = {
|
1321 |
+
# 'VERY HIGH': {
|
1322 |
+
# 'ideal_type': 'active_training',
|
1323 |
+
# 'acceptable_types': ['moderate_activity'],
|
1324 |
+
# 'time_ranges': {
|
1325 |
+
# 'ideal': (120, 180),
|
1326 |
+
# 'acceptable': (90, 200)
|
1327 |
+
# }
|
1328 |
+
# },
|
1329 |
+
# 'HIGH': {
|
1330 |
+
# 'ideal_type': 'moderate_activity',
|
1331 |
+
# 'acceptable_types': ['active_training', 'light_walks'],
|
1332 |
+
# 'time_ranges': {
|
1333 |
+
# 'ideal': (90, 150),
|
1334 |
+
# 'acceptable': (60, 180)
|
1335 |
+
# }
|
1336 |
+
# },
|
1337 |
+
# 'MODERATE': {
|
1338 |
+
# 'ideal_type': 'moderate_activity',
|
1339 |
+
# 'acceptable_types': ['light_walks', 'active_training'],
|
1340 |
+
# 'time_ranges': {
|
1341 |
+
# 'ideal': (45, 90),
|
1342 |
+
# 'acceptable': (30, 120)
|
1343 |
+
# }
|
1344 |
+
# },
|
1345 |
+
# 'LOW': {
|
1346 |
+
# 'ideal_type': 'light_walks',
|
1347 |
+
# 'acceptable_types': ['moderate_activity'],
|
1348 |
+
# 'time_ranges': {
|
1349 |
+
# 'ideal': (30, 60),
|
1350 |
+
# 'acceptable': (15, 90)
|
1351 |
+
# }
|
1352 |
+
# }
|
1353 |
+
# }
|
1354 |
+
|
1355 |
+
# # 計算運動匹配度
|
1356 |
+
# exercise_profile = breed_exercise_preferences.get(exercise_needs,
|
1357 |
+
# breed_exercise_preferences['MODERATE'])
|
1358 |
+
|
1359 |
+
# # 時間匹配度計算
|
1360 |
+
# time_ranges = exercise_profile['time_ranges']
|
1361 |
+
# if time_ranges['ideal'][0] <= exercise_time <= time_ranges['ideal'][1]:
|
1362 |
+
# time_score = 1.0
|
1363 |
+
# elif time_ranges['acceptable'][0] <= exercise_time <= time_ranges['acceptable'][1]:
|
1364 |
+
# # 計算與理想範圍的距離
|
1365 |
+
# if exercise_time < time_ranges['ideal'][0]:
|
1366 |
+
# deviation = (time_ranges['ideal'][0] - exercise_time) / time_ranges['ideal'][0]
|
1367 |
+
# else:
|
1368 |
+
# deviation = (exercise_time - time_ranges['ideal'][1]) / time_ranges['ideal'][1]
|
1369 |
+
# time_score = max(0.4, 1 - (deviation * 0.6))
|
1370 |
+
# else:
|
1371 |
+
# time_score = 0.3
|
1372 |
+
|
1373 |
+
# # 運動類型匹配度計算
|
1374 |
+
# if exercise_type == exercise_profile['ideal_type']:
|
1375 |
+
# type_score = 1.0
|
1376 |
+
# elif exercise_type in exercise_profile['acceptable_types']:
|
1377 |
+
# type_score = 0.7
|
1378 |
+
# else:
|
1379 |
+
# type_score = 0.4
|
1380 |
+
|
1381 |
+
# # 若運動時間過長但強度不足,額外降低分數
|
1382 |
+
# if exercise_time > time_ranges['acceptable'][1] and exercise_type != exercise_profile['ideal_type']:
|
1383 |
+
# type_score *= 0.7
|
1384 |
+
|
1385 |
+
# perfect_matches['exercise_match'] = (time_score * 0.6) + (type_score * 0.4)
|
1386 |
+
|
1387 |
+
# # 體型與空間的實際利用評估
|
1388 |
+
# space_utilization = {
|
1389 |
# 'apartment': {
|
1390 |
# 'Small': 1.0,
|
1391 |
# 'Medium': 0.4,
|
|
|
1395 |
# 'house_small': {
|
1396 |
# 'Small': 0.9,
|
1397 |
# 'Medium': 1.0,
|
1398 |
+
# 'Large': 0.5,
|
1399 |
+
# 'Giant': 0.3
|
1400 |
+
# },
|
1401 |
+
# 'house_large': {
|
1402 |
+
# 'Small': 0.7,
|
1403 |
+
# 'Medium': 0.9,
|
1404 |
+
# 'Large': 1.0,
|
1405 |
+
# 'Giant': 0.95
|
1406 |
# }
|
1407 |
# }
|
1408 |
|
1409 |
+
# # 增加活動空間需求評估
|
1410 |
+
# space_needs = 'high' if exercise_needs in ['VERY HIGH', 'HIGH'] else 'moderate'
|
1411 |
+
# if space_needs == 'high' and user_prefs.living_space != 'house_large':
|
1412 |
+
# space_score = space_utilization[user_prefs.living_space][breed_info['Size']] * 0.8
|
|
|
|
|
1413 |
# else:
|
1414 |
+
# space_score = space_utilization.get(user_prefs.living_space,
|
1415 |
+
# space_utilization['house_small'])[breed_info['Size']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1416 |
|
1417 |
+
# perfect_matches['size_match'] = space_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1418 |
|
1419 |
+
# # 經驗需求的專業評估
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1420 |
# care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1421 |
+
# temperament = breed_info.get('Temperament', '').lower()
|
1422 |
+
|
1423 |
+
# # 定義進階特徵
|
1424 |
+
# advanced_traits = ['working', 'independent', 'dominant', 'protective']
|
1425 |
+
# advanced_trait_count = sum(1 for trait in advanced_traits if trait in temperament)
|
1426 |
+
|
1427 |
+
# # 經驗匹配度計算
|
1428 |
+
# experience_matrix = {
|
1429 |
+
# 'HIGH': {
|
1430 |
+
# 'beginner': 0.2, # 更嚴格的新手限制
|
1431 |
+
# 'intermediate': 0.6,
|
1432 |
+
# 'advanced': 1.0
|
1433 |
+
# },
|
1434 |
+
# 'MODERATE': {
|
1435 |
+
# 'beginner': 0.5,
|
1436 |
+
# 'intermediate': 0.9,
|
1437 |
+
# 'advanced': 0.95
|
1438 |
+
# },
|
1439 |
+
# 'LOW': {
|
1440 |
+
# 'beginner': 0.9,
|
1441 |
+
# 'intermediate': 0.85,
|
1442 |
+
# 'advanced': 0.8 # 對專家稍微降低簡單品種的分數
|
1443 |
+
# }
|
1444 |
# }
|
1445 |
|
1446 |
+
# experience_score = experience_matrix[care_level][user_prefs.experience_level]
|
|
|
1447 |
|
1448 |
+
# # 根據進階特徵調整分數
|
1449 |
+
# if advanced_trait_count > 0:
|
1450 |
+
# if user_prefs.experience_level == 'beginner':
|
1451 |
+
# experience_score *= (0.8 ** advanced_trait_count)
|
1452 |
+
# elif user_prefs.experience_level == 'advanced':
|
1453 |
+
# experience_score *= (1.1 ** min(advanced_trait_count, 2))
|
1454 |
+
|
1455 |
# perfect_matches['experience_match'] = experience_score
|
1456 |
+
|
1457 |
# # 生活條件整體評估
|
1458 |
# living_score = 1.0
|
1459 |
|
1460 |
+
# # 院子影響的嚴格評估
|
1461 |
# if breed_info.get('Exercise Needs', 'MODERATE').upper() in ['HIGH', 'VERY HIGH']:
|
1462 |
# yard_impacts = {
|
1463 |
+
# 'no_yard': 0.5, # 更嚴格的懲罰
|
1464 |
+
# 'shared_yard': 0.7,
|
1465 |
# 'private_yard': 1.0
|
1466 |
# }
|
1467 |
+
# living_score *= yard_impacts.get(user_prefs.yard_access, 0.7)
|
1468 |
+
|
1469 |
+
# # 時間可用性評估
|
1470 |
+
# time_impacts = {
|
1471 |
+
# 'limited': 0.6, # 更嚴格的時間限制影響
|
1472 |
+
# 'moderate': 0.8,
|
1473 |
+
# 'flexible': 1.0
|
1474 |
+
# }
|
1475 |
+
# living_score *= time_impacts.get(user_prefs.time_availability, 0.8)
|
1476 |
|
1477 |
# perfect_matches['living_condition_match'] = living_score
|
1478 |
|
1479 |
# return perfect_matches
|
1480 |
|
1481 |
# def calculate_weights():
|
1482 |
+
# """計算動態權重,強化條件極端情況的影響"""
|
|
|
|
|
|
|
1483 |
# base_weights = {
|
1484 |
# 'space': 0.20,
|
1485 |
# 'exercise': 0.20,
|
|
|
1489 |
# 'health': 0.10
|
1490 |
# }
|
1491 |
|
1492 |
+
# # 計算條件極端度
|
1493 |
+
# def calculate_condition_extremity():
|
1494 |
# extremities = {}
|
1495 |
|
1496 |
+
# # 運動時間極端度評估
|
1497 |
# if user_prefs.exercise_time < 30:
|
1498 |
+
# extremities['exercise'] = ('very_low', 0.9)
|
1499 |
+
# elif user_prefs.exercise_time < 60:
|
1500 |
+
# extremities['exercise'] = ('low', 0.7)
|
1501 |
# elif user_prefs.exercise_time > 150:
|
1502 |
+
# extremities['exercise'] = ('very_high', 0.9)
|
1503 |
+
# elif user_prefs.exercise_time > 120:
|
1504 |
+
# extremities['exercise'] = ('high', 0.7)
|
1505 |
# else:
|
1506 |
+
# extremities['exercise'] = ('moderate', 0.3)
|
1507 |
|
1508 |
+
# # 空間限制極端度評估
|
1509 |
# if user_prefs.living_space == 'apartment':
|
1510 |
+
# extremities['space'] = ('very_restricted', 0.9)
|
1511 |
+
# elif user_prefs.living_space == 'house_small':
|
1512 |
+
# extremities['space'] = ('restricted', 0.6)
|
1513 |
# else:
|
1514 |
+
# extremities['space'] = ('spacious', 0.3)
|
1515 |
|
1516 |
# return extremities
|
1517 |
|
1518 |
+
# extremities = calculate_condition_extremity()
|
1519 |
|
1520 |
+
# # 權重調整
|
1521 |
# weight_adjustments = {}
|
1522 |
|
1523 |
+
# # 空間權重調整
|
1524 |
+
# if extremities['space'][0] == 'very_restricted':
|
1525 |
# weight_adjustments['space'] = 3.0
|
1526 |
+
# weight_adjustments['noise'] = 2.5
|
1527 |
+
# elif extremities['space'][0] == 'restricted':
|
1528 |
+
# weight_adjustments['space'] = 2.0
|
1529 |
+
# weight_adjustments['noise'] = 1.8
|
1530 |
+
# elif extremities['space'][0] == 'spacious':
|
1531 |
+
# weight_adjustments['space'] = 0.7 # 大空間時降低空間權重
|
1532 |
+
# weight_adjustments['exercise'] = 1.5 # 提升運動重要性
|
1533 |
|
1534 |
+
# # 運動需求權重調整
|
1535 |
+
# if extremities['exercise'][0] in ['very_low', 'very_high']:
|
1536 |
+
# weight_adjustments['exercise'] = 3.0
|
1537 |
+
# elif extremities['exercise'][0] in ['low', 'high']:
|
1538 |
+
# weight_adjustments['exercise'] = 2.0
|
1539 |
|
1540 |
+
# # 經驗需求權重調整
|
1541 |
# if user_prefs.experience_level == 'beginner':
|
1542 |
+
# weight_adjustments['experience'] = 2.5
|
1543 |
+
# elif user_prefs.experience_level == 'advanced':
|
1544 |
# weight_adjustments['experience'] = 2.0
|
1545 |
+
|
1546 |
# # 應用權重調整
|
1547 |
# final_weights = base_weights.copy()
|
1548 |
# for key, adjustment in weight_adjustments.items():
|
|
|
1551 |
# return final_weights
|
1552 |
|
1553 |
# def apply_special_case_adjustments(score):
|
1554 |
+
# """處理特殊情況,更嚴格的條件組合評估"""
|
|
|
|
|
|
|
1555 |
# severity = 1.0
|
1556 |
|
1557 |
+
# # 空間與運動組合的嚴格評估
|
1558 |
# if user_prefs.living_space == 'apartment':
|
1559 |
# if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
|
1560 |
+
# severity *= 0.5 # 更嚴重的懲罰
|
1561 |
+
# elif breed_info.get('Exercise Needs') == 'HIGH':
|
1562 |
# severity *= 0.6
|
1563 |
+
# if breed_info['Size'] in ['Large', 'Giant']:
|
1564 |
+
# severity *= 0.5
|
1565 |
|
1566 |
+
# # 經驗與品種難度組合的嚴格評估
|
1567 |
# if user_prefs.experience_level == 'beginner':
|
1568 |
# if breed_info.get('Care Level') == 'HIGH':
|
1569 |
# if user_prefs.has_children:
|
1570 |
+
# severity *= 0.5
|
1571 |
# else:
|
1572 |
+
# severity *= 0.6
|
1573 |
|
1574 |
+
# # 時間限制與需求組合的嚴格評估
|
1575 |
# if user_prefs.time_availability == 'limited':
|
1576 |
+
# if breed_info.get('Exercise Needs').upper() in ['VERY HIGH', 'HIGH']:
|
1577 |
+
# severity *= 0.6
|
1578 |
+
|
1579 |
+
# # 運動類型不匹配的懲罰
|
1580 |
+
# if user_prefs.exercise_time > 120:
|
1581 |
+
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1582 |
+
# if exercise_needs == 'LOW':
|
1583 |
+
# severity *= 0.7
|
1584 |
+
# elif exercise_needs == 'VERY HIGH' and user_prefs.exercise_type == 'light_walks':
|
1585 |
+
# severity *= 0.6
|
1586 |
|
1587 |
# return score * severity
|
1588 |
|
|
|
1599 |
# # 計算基礎分數
|
1600 |
# base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
1601 |
|
1602 |
+
# # 完美匹配獎勵計算(降低獎勵影響)
|
1603 |
# perfect_bonus = 1.0
|
1604 |
+
# perfect_bonus += 0.12 * perfect_conditions['size_match']
|
1605 |
+
# perfect_bonus += 0.12 * perfect_conditions['exercise_match']
|
1606 |
+
# perfect_bonus += 0.12 * perfect_conditions['experience_match']
|
1607 |
+
# perfect_bonus += 0.04 * perfect_conditions['living_condition_match']
|
1608 |
|
1609 |
+
# # 品種特性加成
|
1610 |
# breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1611 |
|
1612 |
+
# # 計算最終分數
|
1613 |
+
# final_score = (base_score * 0.85 + breed_bonus * 0.15) * perfect_bonus
|
1614 |
+
|
1615 |
+
# # 應用特殊情況調整
|
1616 |
# final_score = apply_special_case_adjustments(final_score)
|
1617 |
|
1618 |
# return min(1.0, final_score)
|
|
|
1626 |
4. 條件組合的嚴格評估
|
1627 |
"""
|
1628 |
def evaluate_perfect_conditions():
|
1629 |
+
"""
|
1630 |
+
評估條件匹配度,特別強化:
|
1631 |
+
1. 運動類型與時間的綜合評估
|
1632 |
+
2. 專業技能需求評估
|
1633 |
+
3. ���種特性評估
|
1634 |
+
"""
|
1635 |
perfect_matches = {
|
1636 |
'size_match': 0,
|
1637 |
'exercise_match': 0,
|
1638 |
'experience_match': 0,
|
1639 |
+
'living_condition_match': 0,
|
1640 |
+
'breed_trait_match': 0 # 新增品種特性匹配度
|
1641 |
}
|
1642 |
|
1643 |
+
# 第一部分:運動需求評估
|
1644 |
+
def evaluate_exercise_compatibility():
|
1645 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1646 |
+
exercise_time = user_prefs.exercise_time
|
1647 |
+
exercise_type = user_prefs.exercise_type
|
1648 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1649 |
+
|
1650 |
+
# 定義品種運動特性
|
1651 |
+
exercise_patterns = {
|
1652 |
+
'sprint_type': { # 短跑型,如 Whippet
|
1653 |
+
'keywords': ['fast', 'speed', 'agile', 'sprint'],
|
1654 |
+
'ideal_time': (30, 90),
|
1655 |
+
'ideal_type': 'active_training',
|
1656 |
+
'time_penalties': {
|
1657 |
+
'over': 0.7, # 運動時間過長的懲罰
|
1658 |
+
'under': 0.6 # 運動時間不足的懲罰
|
1659 |
+
}
|
1660 |
+
},
|
1661 |
+
'endurance_type': { # 耐力型,如 Border Collie
|
1662 |
+
'keywords': ['herding', 'working', 'energetic', 'tireless'],
|
1663 |
+
'ideal_time': (90, 180),
|
1664 |
+
'ideal_type': 'moderate_activity',
|
1665 |
+
'time_penalties': {
|
1666 |
+
'over': 0.9, # 耐力型對超時較寬容
|
1667 |
+
'under': 0.5 # 但對運動不足較敏感
|
1668 |
+
}
|
1669 |
+
},
|
1670 |
+
'moderate_type': { # 一般型
|
1671 |
+
'keywords': ['playful', 'active', 'friendly'],
|
1672 |
+
'ideal_time': (60, 120),
|
1673 |
+
'ideal_type': 'moderate_activity',
|
1674 |
+
'time_penalties': {
|
1675 |
+
'over': 0.8,
|
1676 |
+
'under': 0.7
|
1677 |
+
}
|
|
|
|
|
1678 |
}
|
1679 |
}
|
1680 |
+
|
1681 |
+
# 判斷品種的運動類型
|
1682 |
+
breed_type = 'moderate_type' # 預設值
|
1683 |
+
for pattern_type, pattern in exercise_patterns.items():
|
1684 |
+
if any(keyword in temperament for keyword in pattern['keywords']):
|
1685 |
+
breed_type = pattern_type
|
1686 |
+
break
|
1687 |
+
|
1688 |
+
pattern = exercise_patterns[breed_type]
|
1689 |
+
min_time, max_time = pattern['ideal_time']
|
1690 |
+
|
1691 |
+
# 計算時間匹配度
|
1692 |
+
if min_time <= exercise_time <= max_time:
|
1693 |
+
time_score = 1.0
|
1694 |
+
elif exercise_time < min_time:
|
1695 |
+
time_score = pattern['time_penalties']['under']
|
1696 |
else:
|
1697 |
+
time_score = pattern['time_penalties']['over']
|
1698 |
+
|
1699 |
+
# 運動類型匹配度
|
1700 |
+
type_scores = {
|
1701 |
+
'light_walks': 0.7,
|
1702 |
+
'moderate_activity': 0.9,
|
1703 |
+
'active_training': 1.0
|
1704 |
+
}
|
1705 |
+
type_score = type_scores.get(exercise_type, 0.7)
|
1706 |
+
|
1707 |
+
# 特殊情況處理
|
1708 |
+
if breed_type == 'sprint_type' and exercise_time > 120:
|
1709 |
+
if exercise_type != 'active_training':
|
1710 |
+
type_score *= 0.6 # 衝刺型品種不適合長時間中低強度運動
|
1711 |
+
|
1712 |
+
return (time_score * 0.6) + (type_score * 0.4)
|
1713 |
+
|
1714 |
+
# 第二部分:專業技能需求評估
|
1715 |
+
def evaluate_expertise_requirements():
|
1716 |
+
care_level = breed_info.get('Care Level', 'MODERATE').upper()
|
1717 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1718 |
|
1719 |
+
# 定義專業技能要求
|
1720 |
+
expertise_requirements = {
|
1721 |
+
'training_complexity': {
|
1722 |
+
'HIGH': {'beginner': 0.3, 'intermediate': 0.7, 'advanced': 1.0},
|
1723 |
+
'MODERATE': {'beginner': 0.6, 'intermediate': 0.9, 'advanced': 1.0},
|
1724 |
+
'LOW': {'beginner': 0.9, 'intermediate': 0.95, 'advanced': 0.9}
|
1725 |
+
},
|
1726 |
+
'special_traits': {
|
1727 |
+
'working': 0.2, # 工作犬需要額外技能
|
1728 |
+
'herding': 0.2, # 牧羊犬需要特殊訓練
|
1729 |
+
'intelligent': 0.15,# 高智商犬種需要心智刺激
|
1730 |
+
'independent': 0.15,# 獨立性強的需要特殊處理
|
1731 |
+
'protective': 0.1 # 護衛犬需要適當訓練
|
1732 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1733 |
}
|
1734 |
+
|
1735 |
+
# 基礎分數
|
1736 |
+
base_score = expertise_requirements['training_complexity'][care_level][user_prefs.experience_level]
|
1737 |
+
|
1738 |
+
# 特殊特徵評估
|
1739 |
+
trait_penalty = 0
|
1740 |
+
for trait, penalty in expertise_requirements['special_traits'].items():
|
1741 |
+
if trait in temperament:
|
1742 |
+
if user_prefs.experience_level == 'beginner':
|
1743 |
+
trait_penalty += penalty
|
1744 |
+
elif user_prefs.experience_level == 'advanced':
|
1745 |
+
trait_penalty -= penalty * 0.5 # 專家反而因應對特殊特徵而加分
|
1746 |
+
|
1747 |
+
return max(0.2, min(1.0, base_score - trait_penalty))
|
1748 |
+
|
1749 |
+
# 第三部分:生活環境評估
|
1750 |
+
def evaluate_living_conditions():
|
1751 |
+
size = breed_info['Size']
|
1752 |
+
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
|
1753 |
|
1754 |
+
# 空間需求矩陣
|
1755 |
+
space_requirements = {
|
1756 |
+
'apartment': {
|
1757 |
+
'Small': 1.0, 'Medium': 0.4, 'Large': 0.2, 'Giant': 0.1
|
1758 |
+
},
|
1759 |
+
'house_small': {
|
1760 |
+
'Small': 0.9, 'Medium': 1.0, 'Large': 0.5, 'Giant': 0.3
|
1761 |
+
},
|
1762 |
+
'house_large': {
|
1763 |
+
'Small': 0.8, 'Medium': 0.9, 'Large': 1.0, 'Giant': 1.0
|
1764 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1765 |
}
|
1766 |
+
|
1767 |
+
# 基礎空間分數
|
1768 |
+
space_score = space_requirements.get(user_prefs.living_space,
|
1769 |
+
space_requirements['house_small'])[size]
|
1770 |
+
|
1771 |
+
# 活動空間需求調整
|
1772 |
+
if exercise_needs in ['HIGH', 'VERY HIGH']:
|
1773 |
+
if user_prefs.living_space != 'house_large':
|
1774 |
+
space_score *= 0.8
|
1775 |
+
|
1776 |
+
# 院子可用性評估
|
1777 |
+
yard_scores = {
|
1778 |
+
'no_yard': 0.7,
|
1779 |
+
'shared_yard': 0.85,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1780 |
'private_yard': 1.0
|
1781 |
}
|
1782 |
+
space_score *= yard_scores.get(user_prefs.yard_access, 0.8)
|
1783 |
+
|
1784 |
+
return space_score
|
1785 |
+
|
1786 |
+
# 第四部分:品種特性評估(新增)
|
1787 |
+
def evaluate_breed_traits():
|
1788 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1789 |
+
description = breed_info.get('Description', '').lower()
|
1790 |
|
1791 |
+
trait_scores = []
|
1792 |
+
|
1793 |
+
# 評估性格特徵
|
1794 |
+
if user_prefs.has_children:
|
1795 |
+
if 'good with children' in description:
|
1796 |
+
trait_scores.append(1.0)
|
1797 |
+
elif 'patient' in temperament or 'gentle' in temperament:
|
1798 |
+
trait_scores.append(0.8)
|
1799 |
+
else:
|
1800 |
+
trait_scores.append(0.5)
|
1801 |
+
|
1802 |
+
# 評估適應性
|
1803 |
+
adaptability_keywords = ['adaptable', 'versatile', 'flexible']
|
1804 |
+
if any(keyword in temperament for keyword in adaptability_keywords):
|
1805 |
+
trait_scores.append(1.0)
|
1806 |
+
else:
|
1807 |
+
trait_scores.append(0.7)
|
1808 |
+
|
1809 |
+
return sum(trait_scores) / len(trait_scores) if trait_scores else 0.7
|
1810 |
+
|
1811 |
+
# 計算各項匹配分數
|
1812 |
+
perfect_matches['exercise_match'] = evaluate_exercise_compatibility()
|
1813 |
+
perfect_matches['experience_match'] = evaluate_expertise_requirements()
|
1814 |
+
perfect_matches['living_condition_match'] = evaluate_living_conditions()
|
1815 |
+
perfect_matches['size_match'] = evaluate_living_conditions() # 共用生活環境評估
|
1816 |
+
perfect_matches['breed_trait_match'] = evaluate_breed_traits()
|
1817 |
+
|
1818 |
return perfect_matches
|
1819 |
|
1820 |
def calculate_weights():
|
1821 |
+
"""
|
1822 |
+
計算動態權重,特別關注:
|
1823 |
+
1. 條件極端度對權重的影響
|
1824 |
+
2. 多重條件組合的權重調整
|
1825 |
+
3. 品種特性對權重分配的影響
|
1826 |
+
"""
|
1827 |
+
# 基礎權重設定
|
1828 |
base_weights = {
|
1829 |
'space': 0.20,
|
1830 |
'exercise': 0.20,
|
|
|
1834 |
'health': 0.10
|
1835 |
}
|
1836 |
|
1837 |
+
def analyze_condition_extremity():
|
1838 |
+
"""評估各條件的極端程度及其影響"""
|
1839 |
extremities = {}
|
1840 |
|
1841 |
+
# 運動時間極端度分析
|
1842 |
+
def analyze_exercise_extremity():
|
1843 |
+
if user_prefs.exercise_time <= 30:
|
1844 |
+
return ('extremely_low', 0.9)
|
1845 |
+
elif user_prefs.exercise_time <= 60:
|
1846 |
+
return ('low', 0.7)
|
1847 |
+
elif user_prefs.exercise_time >= 180:
|
1848 |
+
return ('extremely_high', 0.9)
|
1849 |
+
elif user_prefs.exercise_time >= 120:
|
1850 |
+
return ('high', 0.7)
|
1851 |
+
return ('moderate', 0.4)
|
1852 |
+
|
1853 |
+
# 空間限制極端度分析
|
1854 |
+
def analyze_space_extremity():
|
1855 |
+
space_extremity = {
|
1856 |
+
'apartment': ('highly_restricted', 0.9),
|
1857 |
+
'house_small': ('restricted', 0.6),
|
1858 |
+
'house_large': ('spacious', 0.4)
|
1859 |
+
}
|
1860 |
+
return space_extremity.get(user_prefs.living_space, ('moderate', 0.5))
|
1861 |
+
|
1862 |
+
# 經驗水平極端度分析
|
1863 |
+
def analyze_experience_extremity():
|
1864 |
+
experience_extremity = {
|
1865 |
+
'beginner': ('low', 0.8),
|
1866 |
+
'intermediate': ('moderate', 0.5),
|
1867 |
+
'advanced': ('high', 0.7)
|
1868 |
+
}
|
1869 |
+
return experience_extremity.get(user_prefs.experience_level, ('moderate', 0.5))
|
1870 |
+
|
1871 |
+
# 整合各項極端度評估
|
1872 |
+
extremities['exercise'] = analyze_exercise_extremity()
|
1873 |
+
extremities['space'] = analyze_space_extremity()
|
1874 |
+
extremities['experience'] = analyze_experience_extremity()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1875 |
|
1876 |
+
return extremities
|
1877 |
+
|
1878 |
+
def calculate_weight_adjustments(extremities):
|
1879 |
+
"""根據條件極端度計算權重調整"""
|
1880 |
+
adjustments = {}
|
1881 |
|
1882 |
+
# 空間權重調整邏輯
|
1883 |
+
if extremities['space'][0] == 'highly_restricted':
|
1884 |
+
adjustments['space'] = 2.5
|
1885 |
+
adjustments['noise'] = 2.0
|
1886 |
+
elif extremities['space'][0] == 'restricted':
|
1887 |
+
adjustments['space'] = 1.8
|
1888 |
+
adjustments['noise'] = 1.5
|
1889 |
+
elif extremities['space'][0] == 'spacious':
|
1890 |
+
adjustments['space'] = 0.8 # 降低空間權重
|
1891 |
+
adjustments['exercise'] = 1.4 # 提升運動重要性
|
1892 |
+
|
1893 |
+
# 運動需求權重調整
|
1894 |
+
if extremities['exercise'][0] in ['extremely_low', 'extremely_high']:
|
1895 |
+
adjustments['exercise'] = 2.5
|
1896 |
+
elif extremities['exercise'][0] in ['low', 'high']:
|
1897 |
+
adjustments['exercise'] = 1.8
|
1898 |
+
|
1899 |
+
# 經驗需求權重調整
|
1900 |
+
if extremities['experience'][0] == 'low':
|
1901 |
+
adjustments['experience'] = 2.2
|
1902 |
+
if breed_info.get('Care Level') == 'HIGH':
|
1903 |
+
adjustments['experience'] = 2.5
|
1904 |
+
elif extremities['experience'][0] == 'high':
|
1905 |
+
adjustments['experience'] = 1.8
|
1906 |
+
|
1907 |
+
# 綜合條件影響
|
1908 |
+
def adjust_for_combinations():
|
1909 |
+
# 公寓 + 高運動需求
|
1910 |
+
if (extremities['space'][0] == 'highly_restricted' and
|
1911 |
+
extremities['exercise'][0] in ['high', 'extremely_high']):
|
1912 |
+
adjustments['space'] = adjustments.get('space', 1.0) * 1.3
|
1913 |
+
adjustments['exercise'] = adjustments.get('exercise', 1.0) * 1.3
|
1914 |
+
|
1915 |
+
# 新手 + 大空間 + 高運動量
|
1916 |
+
if (extremities['experience'][0] == 'low' and
|
1917 |
+
extremities['space'][0] == 'spacious' and
|
1918 |
+
extremities['exercise'][0] in ['high', 'extremely_high']):
|
1919 |
+
adjustments['experience'] = adjustments.get('experience', 1.0) * 1.4
|
1920 |
+
|
1921 |
+
# 空間充足時降低其權重
|
1922 |
+
if extremities['space'][0] == 'spacious':
|
1923 |
+
for key in ['grooming', 'health', 'noise']:
|
1924 |
+
if key not in adjustments:
|
1925 |
+
adjustments[key] = 1.2
|
1926 |
+
|
1927 |
+
adjust_for_combinations()
|
1928 |
+
return adjustments
|
1929 |
+
|
1930 |
+
# 獲取條件極端度
|
1931 |
+
extremities = analyze_condition_extremity()
|
1932 |
+
|
1933 |
+
# 計算權重調整
|
1934 |
+
weight_adjustments = calculate_weight_adjustments(extremities)
|
1935 |
+
|
1936 |
# 應用權重調整
|
1937 |
final_weights = base_weights.copy()
|
1938 |
for key, adjustment in weight_adjustments.items():
|
1939 |
+
if key in final_weights:
|
1940 |
+
final_weights[key] *= adjustment
|
1941 |
+
|
1942 |
return final_weights
|
1943 |
|
1944 |
def apply_special_case_adjustments(score):
|
1945 |
+
"""
|
1946 |
+
處理特殊情況的分數調整,著重:
|
1947 |
+
1. 條件組合的協同效應
|
1948 |
+
2. 品種特性的特殊要求
|
1949 |
+
3. 極端情況的嚴格處理
|
1950 |
+
"""
|
1951 |
+
severity_multiplier = 1.0
|
1952 |
+
|
1953 |
+
def evaluate_spatial_exercise_combination():
|
1954 |
+
"""評估空間與運動需求的組合影響"""
|
1955 |
+
multiplier = 1.0
|
1956 |
+
|
1957 |
+
if user_prefs.living_space == 'apartment':
|
1958 |
+
if breed_info.get('Exercise Needs', 'MODERATE').upper() == 'VERY HIGH':
|
1959 |
+
multiplier *= 0.5
|
1960 |
+
elif breed_info.get('Exercise Needs') == 'HIGH':
|
1961 |
+
multiplier *= 0.6
|
1962 |
|
1963 |
+
# 大型犬在公寓的額外懲罰
|
1964 |
+
if breed_info['Size'] in ['Large', 'Giant']:
|
1965 |
+
multiplier *= 0.5
|
1966 |
+
|
1967 |
+
return multiplier
|
1968 |
+
|
1969 |
+
def evaluate_experience_combination():
|
1970 |
+
"""評估經驗需求的複合影響"""
|
1971 |
+
multiplier = 1.0
|
1972 |
+
temperament = breed_info.get('Temperament', '').lower()
|
1973 |
+
care_level = breed_info.get('Care Level', 'MODERATE')
|
1974 |
+
|
1975 |
+
# 新手飼主的特殊考量
|
1976 |
+
if user_prefs.experience_level == 'beginner':
|
1977 |
+
# 高難度品種的嚴格限制
|
1978 |
+
if care_level == 'HIGH':
|
1979 |
+
if user_prefs.has_children:
|
1980 |
+
multiplier *= 0.5
|
1981 |
+
else:
|
1982 |
+
multiplier *= 0.6
|
1983 |
+
|
1984 |
+
# 特殊性格特徵的影響
|
1985 |
+
challenging_traits = ['independent', 'dominant', 'protective', 'strong-willed']
|
1986 |
+
trait_count = sum(1 for trait in challenging_traits if trait in temperament)
|
1987 |
+
if trait_count > 0:
|
1988 |
+
multiplier *= (0.8 ** trait_count)
|
1989 |
|
1990 |
+
# 進階飼主的特殊考量
|
1991 |
+
elif user_prefs.experience_level == 'advanced':
|
1992 |
+
if care_level == 'LOW' and breed_info.get('Exercise Needs') == 'LOW':
|
1993 |
+
multiplier *= 0.9 # 對專家來說可能過於簡單
|
1994 |
+
|
1995 |
+
return multiplier
|
1996 |
+
|
1997 |
+
def evaluate_breed_specific_requirements():
|
1998 |
+
"""評估品種特定的要求"""
|
1999 |
+
multiplier = 1.0
|
2000 |
+
exercise_time = user_prefs.exercise_time
|
2001 |
+
exercise_type = user_prefs.exercise_type
|
2002 |
+
|
2003 |
+
# 特定品種的運動模式評估
|
2004 |
+
if 'sprint' in breed_info.get('Temperament', '').lower():
|
2005 |
+
if exercise_time > 120 and exercise_type != 'active_training':
|
2006 |
+
multiplier *= 0.7 # 衝刺型品種不適合長時間中低強度運動
|
2007 |
+
|
2008 |
+
# 工作犬種的特殊需求
|
2009 |
+
if any(trait in breed_info.get('Temperament', '').lower()
|
2010 |
+
for trait in ['working', 'herding']):
|
2011 |
+
if exercise_time < 90 or exercise_type == 'light_walks':
|
2012 |
+
multiplier *= 0.7
|
2013 |
+
|
2014 |
+
return multiplier
|
2015 |
+
|
2016 |
+
def evaluate_environmental_impact():
|
2017 |
+
"""評估環境因素的影響"""
|
2018 |
+
multiplier = 1.0
|
2019 |
+
|
2020 |
+
# 時間限制的影響
|
2021 |
+
if user_prefs.time_availability == 'limited':
|
2022 |
+
if breed_info.get('Exercise Needs').upper() in ['VERY HIGH', 'HIGH']:
|
2023 |
+
multiplier *= 0.7
|
2024 |
+
|
2025 |
+
# 噪音敏感度的影響
|
2026 |
+
if user_prefs.noise_tolerance == 'low':
|
2027 |
+
if breed_info.get('Breed') in breed_noise_info:
|
2028 |
+
if breed_noise_info[breed_info['Breed']]['noise_level'].lower() == 'high':
|
2029 |
+
multiplier *= 0.6
|
2030 |
+
|
2031 |
+
return multiplier
|
2032 |
+
|
2033 |
+
# 整合所有特殊情況的評估
|
2034 |
+
severity_multiplier *= evaluate_spatial_exercise_combination()
|
2035 |
+
severity_multiplier *= evaluate_experience_combination()
|
2036 |
+
severity_multiplier *= evaluate_breed_specific_requirements()
|
2037 |
+
severity_multiplier *= evaluate_environmental_impact()
|
2038 |
+
|
2039 |
+
# 確保最終分數在合理範圍內
|
2040 |
+
final_score = score * severity_multiplier
|
2041 |
+
return max(0.2, min(1.0, final_score))
|
2042 |
|
2043 |
# 評估完美匹配條件
|
2044 |
perfect_conditions = evaluate_perfect_conditions()
|
|
|
2046 |
# 計算動態權重
|
2047 |
weights = calculate_weights()
|
2048 |
|
2049 |
+
# 正規化權重確保總和為1
|
2050 |
total_weight = sum(weights.values())
|
2051 |
normalized_weights = {k: v/total_weight for k, v in weights.items()}
|
2052 |
|
2053 |
# 計算基礎分數
|
2054 |
base_score = sum(scores[k] * normalized_weights[k] for k in scores.keys())
|
2055 |
|
2056 |
+
# 計算完美匹配獎勵(降低獎勵影響以避免過高分數)
|
2057 |
perfect_bonus = 1.0
|
2058 |
+
perfect_bonus += 0.10 * perfect_conditions['size_match'] # 降低單項獎勵
|
2059 |
+
perfect_bonus += 0.10 * perfect_conditions['exercise_match']
|
2060 |
+
perfect_bonus += 0.10 * perfect_conditions['experience_match']
|
2061 |
+
perfect_bonus += 0.05 * perfect_conditions['living_condition_match']
|
2062 |
+
perfect_bonus += 0.05 * perfect_conditions['breed_trait_match'] # 新增品種特性獎勵
|
2063 |
|
2064 |
+
# 計算品種特性加成(使用更嚴格的係數)
|
2065 |
+
breed_bonus = calculate_breed_bonus(breed_info, user_prefs) * 0.15 # 降低品種加成的影響
|
2066 |
|
2067 |
+
# 計算初步分數
|
2068 |
+
initial_score = (base_score * 0.85 + breed_bonus * 0.15) * perfect_bonus
|
2069 |
|
2070 |
# 應用特殊情況調整
|
2071 |
+
final_score = apply_special_case_adjustments(initial_score)
|
2072 |
|
2073 |
+
# 確保最終分數在有效範圍內
|
2074 |
+
return min(1.0, max(0.3, final_score))
|
2075 |
|
2076 |
|
2077 |
def amplify_score_extreme(score: float) -> float:
|