Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +62 -61
scoring_calculation_system.py
CHANGED
@@ -1460,6 +1460,7 @@ def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -
|
|
1460 |
|
1461 |
return min(0.2, adaptability_score)
|
1462 |
|
|
|
1463 |
def calculate_final_weighted_score(
|
1464 |
scores: dict,
|
1465 |
user_prefs: UserPreferences,
|
@@ -1467,81 +1468,81 @@ def calculate_final_weighted_score(
|
|
1467 |
adaptability_bonus: float
|
1468 |
) -> float:
|
1469 |
"""
|
1470 |
-
|
1471 |
"""
|
1472 |
-
#
|
1473 |
base_weights = {
|
1474 |
-
'space': 0.
|
1475 |
-
'exercise': 0.25,
|
1476 |
'grooming': 0.15,
|
1477 |
'experience': 0.15,
|
1478 |
-
'health': 0.
|
1479 |
-
'noise': 0.
|
1480 |
}
|
1481 |
-
|
1482 |
-
# 條件特殊化加權
|
1483 |
-
special_conditions = 0.0
|
1484 |
-
|
1485 |
-
# 1. 極端條件加權
|
1486 |
-
if user_prefs.noise_tolerance == 'low':
|
1487 |
-
if scores['noise'] < 0.7: # 對低噪音容忍度更嚴格
|
1488 |
-
special_conditions -= 0.15
|
1489 |
-
|
1490 |
-
if user_prefs.grooming_commitment == 'high':
|
1491 |
-
if breed_info.get('Grooming Needs', '').upper() == 'HIGH':
|
1492 |
-
special_conditions += 0.12 # 獎勵高美容需求品種
|
1493 |
-
|
1494 |
-
# 2. 專業度差異化
|
1495 |
-
if user_prefs.experience_level == 'advanced':
|
1496 |
-
if breed_info.get('Care Level', '').upper() == 'HIGH':
|
1497 |
-
special_conditions += 0.15 # 資深者配高難度品種加分
|
1498 |
-
elif breed_info.get('Care Level', '').upper() == 'LOW':
|
1499 |
-
special_conditions -= 0.10 # 資深者配低難度品種扣分
|
1500 |
-
|
1501 |
-
# 3. 居住環境極端匹配
|
1502 |
-
if user_prefs.living_space == 'apartment':
|
1503 |
-
if breed_info.get('Size', '') == 'Large':
|
1504 |
-
special_conditions -= 0.20 # 大型犬在公寓嚴重扣分
|
1505 |
-
elif breed_info.get('Size', '') == 'Small':
|
1506 |
-
special_conditions += 0.10 # 小型犬在公寓額外加分
|
1507 |
-
|
1508 |
-
# 4. 品種特色加權
|
1509 |
-
breed_traits = breed_info.get('Temperament', '').lower()
|
1510 |
-
description = breed_info.get('Description', '').lower()
|
1511 |
|
1512 |
-
|
1513 |
-
|
1514 |
-
special_conditions += 0.15
|
1515 |
-
elif user_prefs.exercise_time < 45: # 低運動量使用者
|
1516 |
-
if 'calm' in breed_traits or 'lazy' in breed_traits:
|
1517 |
-
special_conditions += 0.12
|
1518 |
|
1519 |
-
#
|
1520 |
weighted_base = sum(score * base_weights[category] for category, score in scores.items())
|
1521 |
|
1522 |
-
# 品種特性加成
|
1523 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1524 |
|
1525 |
-
# 最終分數計算 -
|
1526 |
-
|
1527 |
-
|
1528 |
-
# 分數放大,使差異更明顯
|
1529 |
-
if final_score > 0.8:
|
1530 |
-
final_score = 0.8 + (final_score - 0.8) * 1.5
|
1531 |
-
elif final_score < 0.6:
|
1532 |
-
final_score = 0.6 - (0.6 - final_score) * 1.5
|
1533 |
|
1534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1535 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1536 |
|
1537 |
-
def
|
1538 |
-
"""
|
1539 |
-
|
1540 |
-
|
|
|
|
|
|
|
1541 |
|
1542 |
-
#
|
1543 |
normalized = (score - 0.5) / 0.5
|
1544 |
-
amplified = math.pow(abs(normalized), 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1545 |
|
1546 |
-
|
1547 |
-
return max(min_score, min(max_score, final))
|
|
|
1460 |
|
1461 |
return min(0.2, adaptability_score)
|
1462 |
|
1463 |
+
|
1464 |
def calculate_final_weighted_score(
|
1465 |
scores: dict,
|
1466 |
user_prefs: UserPreferences,
|
|
|
1468 |
adaptability_bonus: float
|
1469 |
) -> float:
|
1470 |
"""
|
1471 |
+
優化的最終分數計算系統
|
1472 |
"""
|
1473 |
+
# 1. 基礎分數計算 - 使用更極端的權重
|
1474 |
base_weights = {
|
1475 |
+
'space': 0.35, # 大幅提高空間權重
|
1476 |
+
'exercise': 0.25,
|
1477 |
'grooming': 0.15,
|
1478 |
'experience': 0.15,
|
1479 |
+
'health': 0.07,
|
1480 |
+
'noise': 0.03 # 降低噪音的基礎權重
|
1481 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1482 |
|
1483 |
+
# 2. 條件特殊化評分
|
1484 |
+
condition_bonus = calculate_condition_bonus(breed_info, user_prefs, scores)
|
|
|
|
|
|
|
|
|
1485 |
|
1486 |
+
# 3. 計算加權基礎分數
|
1487 |
weighted_base = sum(score * base_weights[category] for category, score in scores.items())
|
1488 |
|
1489 |
+
# 4. 品種特性加成
|
1490 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1491 |
|
1492 |
+
# 5. 最終分數計算 - 改變權重分配
|
1493 |
+
raw_score = (weighted_base * 0.60) + (breed_bonus * 0.25) +
|
1494 |
+
(adaptability_bonus * 0.10) + (condition_bonus * 0.05)
|
|
|
|
|
|
|
|
|
|
|
1495 |
|
1496 |
+
# 6. 分數轉換 - 使用更激進的轉換函數
|
1497 |
+
return amplify_score_extreme(raw_score)
|
1498 |
+
|
1499 |
+
def calculate_condition_bonus(breed_info: dict, user_prefs: UserPreferences, scores: dict) -> float:
|
1500 |
+
"""
|
1501 |
+
計算條件特殊化加分,強化極端條件的影響
|
1502 |
+
"""
|
1503 |
+
bonus = 0.0
|
1504 |
|
1505 |
+
# 居住空間極端匹配
|
1506 |
+
if user_prefs.living_space == 'apartment':
|
1507 |
+
if breed_info['Size'] == 'Small' and scores['noise'] > 0.8:
|
1508 |
+
bonus += 0.25 # 顯著獎勵適合公寓的小型安靜犬種
|
1509 |
+
elif breed_info['Size'] in ['Large', 'Giant']:
|
1510 |
+
bonus -= 0.35 # 嚴重懲罰大型犬
|
1511 |
+
|
1512 |
+
# 美容需求匹配
|
1513 |
+
if user_prefs.grooming_commitment == 'low':
|
1514 |
+
if breed_info.get('Grooming Needs') == 'HIGH':
|
1515 |
+
bonus -= 0.30 # 嚴重懲罰高美容需求
|
1516 |
+
|
1517 |
+
# 經驗等級匹配
|
1518 |
+
if user_prefs.experience_level == 'beginner':
|
1519 |
+
if breed_info.get('Care Level') == 'HIGH':
|
1520 |
+
bonus -= 0.25
|
1521 |
+
elif user_prefs.experience_level == 'advanced':
|
1522 |
+
if breed_info.get('Care Level') == 'LOW':
|
1523 |
+
bonus -= 0.20
|
1524 |
+
|
1525 |
+
return bonus
|
1526 |
|
1527 |
+
def amplify_score_extreme(score: float) -> float:
|
1528 |
+
"""
|
1529 |
+
更激進��分數轉換函數
|
1530 |
+
"""
|
1531 |
+
# 基礎範圍調整
|
1532 |
+
base_min = 0.65 # 提高最低分
|
1533 |
+
base_max = 0.98 # 提高最高分
|
1534 |
|
1535 |
+
# 非線性轉換
|
1536 |
normalized = (score - 0.5) / 0.5
|
1537 |
+
amplified = math.pow(abs(normalized), 1.2) * math.copysign(1, normalized)
|
1538 |
+
|
1539 |
+
# S型曲線轉換
|
1540 |
+
sigmoid = 1 / (1 + math.exp(-amplified * 3))
|
1541 |
+
|
1542 |
+
# 映射到目標範圍
|
1543 |
+
final = base_min + (base_max - base_min) * sigmoid
|
1544 |
+
|
1545 |
+
# 加入隨機微擾動以打破相似分數
|
1546 |
+
noise = random.uniform(-0.002, 0.002)
|
1547 |
|
1548 |
+
return round(min(base_max, max(base_min, final + noise)), 4)
|
|