Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,203 Bytes
8b87358 745b3ae 8b87358 1044c24 678ff71 81d7def c9e5868 7bde2e9 c9e5868 3c27777 c9e5868 8b87358 21b74d9 8b87358 979a7b6 8b87358 bbd78ec 8b87358 bbd78ec 8b87358 bbd78ec 8b87358 81d7def 82c1429 866dbcd 0322896 ccb675d f3a7e83 5065990 4edafdf f3a7e83 ff1e401 f3a7e83 0322896 8f303b0 1eb7f90 614e5ca 909939e 31492de 0322896 1eb7f90 94a7e95 909939e 94a7e95 31492de 745b3ae 31492de 94a7e95 614e5ca 1eb7f90 614e5ca 909939e 614e5ca 1eb7f90 614e5ca 909939e 614e5ca 909939e 94a7e95 909939e 94a7e95 614e5ca f0bc5f7 9edca24 196f0d8 9edca24 772eb5e 196f0d8 614e5ca 9edca24 614e5ca 9edca24 196f0d8 9edca24 772eb5e 9edca24 772eb5e 196f0d8 9edca24 196f0d8 9edca24 196f0d8 772eb5e 196f0d8 2b5bcf9 196f0d8 9edca24 196f0d8 9edca24 196f0d8 9edca24 196f0d8 f061989 196f0d8 d8c1250 a312d58 73cee42 4f1e4cb 083c145 4f1e4cb 5c648b4 196f0d8 215a635 d8c1250 215a635 196f0d8 215a635 73cee42 196f0d8 73cee42 20887f3 3fa059c 4486636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from data_manager import get_dog_description
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
# 下載YOLOv8預訓練模型
model_yolo = YOLO('yolov8n.pt') # 使用 YOLOv8 預訓練模型
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# evaluation mode
model.eval()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def get_akc_breeds_link():
return "https://www.akc.org/dog-breeds/"
def format_description(description, breed):
if isinstance(description, dict):
# 確保每一個描述項目換行顯示
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
else:
formatted_description = description
akc_link = get_akc_breeds_link()
formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
"You may need to search for the specific breed on that page. "
"I am not responsible for the content on external sites. "
"Please refer to the AKC's terms of use and privacy policy.*")
formatted_description += disclaimer
return formatted_description
async def predict_single_dog(image):
return await asyncio.to_thread(_predict_single_dog, image)
def _predict_single_dog(image):
image_tensor = preprocess_image(image)
with torch.no_grad():
output = model(image_tensor)
logits = output[0] if isinstance(output, tuple) else output
probabilities = F.softmax(logits, dim=1)
topk_probs, topk_indices = torch.topk(probabilities, k=3)
top1_prob = topk_probs[0][0].item()
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
return top1_prob, topk_breeds, topk_probs_percent
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
# dogs = []
# for box in results.boxes:
# if box.cls == 16: # COCO 資料集中狗的類別是 16
# xyxy = box.xyxy[0].tolist()
# confidence = box.conf.item()
# cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
# dogs.append((cropped_image, confidence, xyxy))
# return dogs
# async def predict(image):
# if image is None:
# return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
# try:
# if isinstance(image, np.ndarray):
# image = Image.fromarray(image)
# dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
# if len(dogs) <= 1:
# return await process_single_dog(image)
# # 多狗情境
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
# explanations = []
# buttons = []
# annotated_image = image.copy()
# draw = ImageDraw.Draw(annotated_image)
# font = ImageFont.load_default()
# for i, (cropped_image, _, box) in enumerate(dogs):
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
# color = color_list[i % len(color_list)]
# draw.rectangle(box, outline=color, width=3)
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
# breed = topk_breeds[0]
# if top1_prob >= 0.5:
# description = get_dog_description(breed)
# formatted_description = format_description(description, breed)
# explanations.append(f"Dog {i+1}: {formatted_description}")
# elif top1_prob >= 0.2:
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
# explanations.append(dog_explanation)
# buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
# else:
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
# final_explanation = "\n\n".join(explanations)
# if buttons:
# final_explanation += "\n\nClick on a button to view more information about the breed."
# initial_state = {
# "explanation": final_explanation,
# "buttons": buttons,
# "show_back": True
# }
# return (final_explanation, annotated_image,
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
# buttons[1] if len(buttons) > 1 else gr.update(visible=False),
# buttons[2] if len(buttons) > 2 else gr.update(visible=False),
# gr.update(visible=True),
# initial_state)
# else:
# initial_state = {
# "explanation": final_explanation,
# "buttons": [],
# "show_back": False
# }
# return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
# except Exception as e:
# error_msg = f"An error occurred: {str(e)}"
# print(error_msg) # 添加日誌輸出
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.4, merge_threshold=0.7):
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
dogs = []
image_area = image.width * image.height
min_area_ratio = 0.005 # 最小檢測面積佔整個圖像的比例
for box in results.boxes:
if box.cls == 16: # COCO 數據集中狗的類別是 16
xyxy = box.xyxy[0].tolist()
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
if area / image_area >= min_area_ratio:
confidence = box.conf.item()
dogs.append((xyxy, confidence))
if dogs:
boxes = torch.tensor([dog[0] for dog in dogs])
scores = torch.tensor([dog[1] for dog in dogs])
# 應用 NMS
keep = nms(boxes, scores, iou_threshold)
merged_dogs = []
for i in keep:
xyxy = boxes[i].tolist()
confidence = scores[i].item()
merged_dogs.append((xyxy, confidence))
# 後處理:分離過於接近的檢測框
final_dogs = []
while merged_dogs:
base_dog = merged_dogs.pop(0)
to_merge = [base_dog]
i = 0
while i < len(merged_dogs):
iou = box_iou(torch.tensor([base_dog[0]]), torch.tensor([merged_dogs[i][0]]))[0][0].item()
if iou > merge_threshold:
to_merge.append(merged_dogs.pop(i))
else:
i += 1
if len(to_merge) == 1:
final_dogs.append(base_dog)
else:
# 如果檢測到多個重疊框,嘗試分離它們
centers = torch.tensor([[((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)] for box, _ in to_merge])
distances = torch.cdist(centers, centers)
if torch.any(distances > 0): # 確保不是完全重疊
max_distance = distances.max()
if max_distance > (base_dog[0][2] - base_dog[0][0]) * 0.5: # 如果最大距離大於框寬度的一半
final_dogs.extend(to_merge)
else:
# 合併為一個框
merged_box = torch.tensor([box for box, _ in to_merge]).mean(dim=0)
merged_confidence = max(conf for _, conf in to_merge)
final_dogs.append((merged_box.tolist(), merged_confidence))
else:
# 完全重疊的情況,保留置信度最高的
best_dog = max(to_merge, key=lambda x: x[1])
final_dogs.append(best_dog)
# 擴展邊界框並創建剪裁的圖像
expanded_dogs = []
for xyxy, confidence in final_dogs:
expanded_xyxy = [
max(0, xyxy[0] - 20),
max(0, xyxy[1] - 20),
min(image.width, xyxy[2] + 20),
min(image.height, xyxy[3] + 20)
]
cropped_image = image.crop(expanded_xyxy)
expanded_dogs.append((cropped_image, confidence, expanded_xyxy))
return expanded_dogs
# 如果沒有檢測到狗狗,返回整張圖片
return [(image, 1.0, [0, 0, image.width, image.height])]
async def predict(image):
if image is None:
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
dogs = await detect_multiple_dogs(image)
# 如果沒有檢測到狗狗或只檢測到一隻,使用整張圖像進行分類
if len(dogs) <= 1:
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
if top1_prob >= 0.5:
return await process_single_dog(image)
else:
dogs = [(image, 1.0, [0, 0, image.width, image.height])]
# 多狗情境處理保持不變
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
explanations = []
buttons = []
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
font = ImageFont.load_default()
for i, (cropped_image, _, box) in enumerate(dogs):
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
color = color_list[i % len(color_list)]
draw.rectangle(box, outline=color, width=3)
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
breed = topk_breeds[0]
if top1_prob >= 0.5:
description = get_dog_description(breed)
formatted_description = format_description(description, breed)
explanations.append(f"Dog {i+1}: {formatted_description}")
else:
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
explanations.append(dog_explanation)
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
final_explanation = "\n\n".join(explanations)
if buttons:
final_explanation += "\n\nClick on a button to view more information about the breed."
initial_state = {
"explanation": final_explanation,
"buttons": buttons,
"show_back": True
}
return (final_explanation, annotated_image,
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
gr.update(visible=True),
initial_state)
else:
initial_state = {
"explanation": final_explanation,
"buttons": [],
"show_back": False
}
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}"
print(error_msg) # 添加日誌輸出
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
async def process_single_dog(image):
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
if top1_prob < 0.2:
initial_state = {
"explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
"buttons": [],
"show_back": False
}
return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
breed = topk_breeds[0]
description = get_dog_description(breed)
if top1_prob >= 0.5:
formatted_description = format_description(description, breed)
initial_state = {
"explanation": formatted_description,
"buttons": [],
"show_back": False
}
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
else:
explanation = (
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
"Click on a button to view more information about the breed."
)
buttons = [
gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
gr.update(visible=True, value=f"More about {topk_breeds[2]}")
]
initial_state = {
"explanation": explanation,
"buttons": buttons,
"show_back": True
}
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
def show_details(choice, previous_output, initial_state):
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
formatted_description = format_description(description, breed)
return formatted_description, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg) # 添加日誌輸出
return error_msg, gr.update(visible=True), initial_state
# 介面部分
with gr.Blocks() as iface:
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="pil")
output_image = gr.Image(label="Annotated Image")
output = gr.Markdown(label="Prediction Results")
with gr.Row():
btn1 = gr.Button("View More 1", visible=False)
btn2 = gr.Button("View More 2", visible=False)
btn3 = gr.Button("View More 3", visible=False)
back_button = gr.Button("Back", visible=False)
initial_state = gr.State()
input_image.change(
predict,
inputs=input_image,
outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
)
for btn in [btn1, btn2, btn3]:
btn.click(
show_details,
inputs=[btn, output, initial_state],
outputs=[output, back_button, initial_state]
)
back_button.click(
lambda state: (state["explanation"],
state["buttons"][0] if len(state["buttons"]) > 0 else gr.update(visible=False),
state["buttons"][1] if len(state["buttons"]) > 1 else gr.update(visible=False),
state["buttons"][2] if len(state["buttons"]) > 2 else gr.update(visible=False),
gr.update(visible=state["show_back"])),
inputs=[initial_state],
outputs=[output, btn1, btn2, btn3, back_button]
)
gr.Examples(
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
inputs=input_image
)
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
if __name__ == "__main__":
iface.launch()
|