Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -243,14 +243,12 @@ def _predict_single_dog(image):
|
|
243 |
# print(error_msg) # 添加日誌輸出
|
244 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
245 |
|
246 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
247 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
248 |
dogs = []
|
249 |
-
boxes = []
|
250 |
-
confidences = []
|
251 |
|
252 |
image_area = image.width * image.height
|
253 |
-
min_area_ratio = 0.
|
254 |
|
255 |
for box in results.boxes:
|
256 |
if box.cls == 16: # COCO 數據集中狗的類別是 16
|
@@ -258,72 +256,34 @@ async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.5, mer
|
|
258 |
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
259 |
if area / image_area >= min_area_ratio:
|
260 |
confidence = box.conf.item()
|
261 |
-
|
262 |
-
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
275 |
-
dogs.append((cropped_image, confidence, xyxy))
|
276 |
-
|
277 |
-
# 合併鄰近的邊界框
|
278 |
-
merged_dogs = []
|
279 |
-
while dogs:
|
280 |
-
base_dog = dogs.pop(0)
|
281 |
-
base_box = torch.tensor(base_dog[2])
|
282 |
-
to_merge = [base_dog]
|
283 |
-
|
284 |
-
i = 0
|
285 |
-
while i < len(dogs):
|
286 |
-
compare_box = torch.tensor(dogs[i][2])
|
287 |
-
iou = box_iou(base_box.unsqueeze(0), compare_box.unsqueeze(0)).item()
|
288 |
-
if iou > merge_threshold:
|
289 |
-
to_merge.append(dogs.pop(i))
|
290 |
-
else:
|
291 |
-
i += 1
|
292 |
-
|
293 |
-
if len(to_merge) == 1:
|
294 |
-
merged_dogs.append(base_dog)
|
295 |
else:
|
296 |
-
|
297 |
-
merged_confidence = max(dog[1] for dog in to_merge)
|
298 |
-
merged_image = image.crop(merged_box.tolist())
|
299 |
-
merged_dogs.append((merged_image, merged_confidence, merged_box.tolist()))
|
300 |
-
|
301 |
-
# 後處理:限制檢測到的狗狗數量
|
302 |
-
if len(merged_dogs) > 5:
|
303 |
-
merged_dogs = sorted(merged_dogs, key=lambda x: x[1], reverse=True)[:5]
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
transform = transforms.Compose([
|
313 |
-
transforms.Resize((224, 224)),
|
314 |
-
transforms.ToTensor(),
|
315 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
316 |
-
])
|
317 |
-
img_tensor = transform(image).unsqueeze(0)
|
318 |
-
|
319 |
-
with torch.no_grad():
|
320 |
-
output = fallback_model(img_tensor)
|
321 |
-
confidence, predicted = torch.max(output, 1)
|
322 |
|
323 |
-
if
|
324 |
-
return [(image, confidence.item(), [0, 0, image.width, image.height])]
|
325 |
-
else:
|
326 |
-
return []
|
327 |
|
328 |
async def predict(image):
|
329 |
if image is None:
|
@@ -333,15 +293,12 @@ async def predict(image):
|
|
333 |
if isinstance(image, np.ndarray):
|
334 |
image = Image.fromarray(image)
|
335 |
|
336 |
-
dogs = await detect_multiple_dogs(image
|
337 |
-
|
338 |
-
if len(dogs) == 0:
|
339 |
-
return "No dogs detected in the image.", image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
340 |
|
341 |
if len(dogs) == 1:
|
342 |
-
return await process_single_dog(dogs[0][0])
|
343 |
|
344 |
-
#
|
345 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
346 |
explanations = []
|
347 |
buttons = []
|
@@ -349,7 +306,7 @@ async def predict(image):
|
|
349 |
draw = ImageDraw.Draw(annotated_image)
|
350 |
font = ImageFont.load_default()
|
351 |
|
352 |
-
for i, (cropped_image,
|
353 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
354 |
color = color_list[i % len(color_list)]
|
355 |
draw.rectangle(box, outline=color, width=3)
|
@@ -360,13 +317,11 @@ async def predict(image):
|
|
360 |
description = get_dog_description(breed)
|
361 |
formatted_description = format_description(description, breed)
|
362 |
explanations.append(f"Dog {i+1}: {formatted_description}")
|
363 |
-
|
364 |
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
365 |
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
366 |
explanations.append(dog_explanation)
|
367 |
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
368 |
-
else:
|
369 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
370 |
|
371 |
final_explanation = "\n\n".join(explanations)
|
372 |
if buttons:
|
@@ -392,7 +347,7 @@ async def predict(image):
|
|
392 |
|
393 |
except Exception as e:
|
394 |
error_msg = f"An error occurred: {str(e)}"
|
395 |
-
print(error_msg) #
|
396 |
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
397 |
|
398 |
|
|
|
243 |
# print(error_msg) # 添加日誌輸出
|
244 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
245 |
|
246 |
+
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.4, merge_threshold=0.3):
|
247 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
248 |
dogs = []
|
|
|
|
|
249 |
|
250 |
image_area = image.width * image.height
|
251 |
+
min_area_ratio = 0.01 # 最小檢測面積佔整個圖像的比例
|
252 |
|
253 |
for box in results.boxes:
|
254 |
if box.cls == 16: # COCO 數據集中狗的類別是 16
|
|
|
256 |
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
257 |
if area / image_area >= min_area_ratio:
|
258 |
confidence = box.conf.item()
|
259 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
260 |
+
dogs.append((cropped_image, confidence, xyxy))
|
261 |
|
262 |
+
# 合併重疊的框
|
263 |
+
merged_dogs = []
|
264 |
+
while dogs:
|
265 |
+
base_dog = dogs.pop(0)
|
266 |
+
base_box = torch.tensor(base_dog[2])
|
267 |
+
to_merge = [base_dog]
|
268 |
|
269 |
+
i = 0
|
270 |
+
while i < len(dogs):
|
271 |
+
compare_box = torch.tensor(dogs[i][2])
|
272 |
+
iou = box_iou(base_box.unsqueeze(0), compare_box.unsqueeze(0)).item()
|
273 |
+
if iou > merge_threshold:
|
274 |
+
to_merge.append(dogs.pop(i))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
else:
|
276 |
+
i += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
if len(to_merge) == 1:
|
279 |
+
merged_dogs.append(base_dog)
|
280 |
+
else:
|
281 |
+
merged_box = torch.tensor([dog[2] for dog in to_merge]).mean(0)
|
282 |
+
merged_confidence = max(dog[1] for dog in to_merge)
|
283 |
+
merged_image = image.crop(merged_box.tolist())
|
284 |
+
merged_dogs.append((merged_image, merged_confidence, merged_box.tolist()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
return merged_dogs if merged_dogs else [(image, 1.0, [0, 0, image.width, image.height])]
|
|
|
|
|
|
|
287 |
|
288 |
async def predict(image):
|
289 |
if image is None:
|
|
|
293 |
if isinstance(image, np.ndarray):
|
294 |
image = Image.fromarray(image)
|
295 |
|
296 |
+
dogs = await detect_multiple_dogs(image)
|
|
|
|
|
|
|
297 |
|
298 |
if len(dogs) == 1:
|
299 |
+
return await process_single_dog(dogs[0][0])
|
300 |
|
301 |
+
# 多狗情境
|
302 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
303 |
explanations = []
|
304 |
buttons = []
|
|
|
306 |
draw = ImageDraw.Draw(annotated_image)
|
307 |
font = ImageFont.load_default()
|
308 |
|
309 |
+
for i, (cropped_image, _, box) in enumerate(dogs):
|
310 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
311 |
color = color_list[i % len(color_list)]
|
312 |
draw.rectangle(box, outline=color, width=3)
|
|
|
317 |
description = get_dog_description(breed)
|
318 |
formatted_description = format_description(description, breed)
|
319 |
explanations.append(f"Dog {i+1}: {formatted_description}")
|
320 |
+
else:
|
321 |
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
322 |
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
323 |
explanations.append(dog_explanation)
|
324 |
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
|
|
|
|
325 |
|
326 |
final_explanation = "\n\n".join(explanations)
|
327 |
if buttons:
|
|
|
347 |
|
348 |
except Exception as e:
|
349 |
error_msg = f"An error occurred: {str(e)}"
|
350 |
+
print(error_msg) # 添加日誌輸出
|
351 |
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
352 |
|
353 |
|