Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -300,17 +300,72 @@ def _predict_single_dog(image):
|
|
300 |
# dogs.append((cropped_image, confidence, xyxy))
|
301 |
# return dogs
|
302 |
|
303 |
-
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
305 |
dogs = []
|
|
|
|
|
|
|
306 |
for box in results.boxes:
|
307 |
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
308 |
xyxy = box.xyxy[0].tolist()
|
309 |
confidence = box.conf.item()
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
return dogs
|
313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
# async def predict(image):
|
316 |
# if image is None:
|
@@ -432,59 +487,63 @@ async def predict(image):
|
|
432 |
if isinstance(image, np.ndarray):
|
433 |
image = Image.fromarray(image)
|
434 |
|
435 |
-
dogs = await detect_multiple_dogs(image, conf_threshold=0.05)
|
436 |
|
437 |
-
if len(dogs)
|
|
|
438 |
return await process_single_dog(image)
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
explanations = []
|
443 |
-
buttons = []
|
444 |
-
annotated_image = image.copy()
|
445 |
-
draw = ImageDraw.Draw(annotated_image)
|
446 |
-
font = ImageFont.load_default()
|
447 |
-
|
448 |
-
for i, (cropped_image, _, box) in enumerate(dogs):
|
449 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
450 |
-
color = color_list[i % len(color_list)]
|
451 |
-
draw.rectangle(box, outline=color, width=3)
|
452 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
453 |
-
|
454 |
-
breed = topk_breeds[0]
|
455 |
-
if top1_prob >= 0.5:
|
456 |
-
description = get_dog_description(breed)
|
457 |
-
formatted_description = format_description(description, breed)
|
458 |
-
explanations.append(f"Dog {i+1}: {formatted_description}")
|
459 |
-
elif top1_prob >= 0.2:
|
460 |
-
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
461 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
462 |
-
explanations.append(dog_explanation)
|
463 |
-
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
464 |
-
else:
|
465 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
466 |
-
|
467 |
-
final_explanation = "\n\n".join(explanations)
|
468 |
-
if buttons:
|
469 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
470 |
-
initial_state = {
|
471 |
-
"explanation": final_explanation,
|
472 |
-
"buttons": buttons,
|
473 |
-
"show_back": True
|
474 |
-
}
|
475 |
-
return (final_explanation, annotated_image,
|
476 |
-
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
477 |
-
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
478 |
-
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
479 |
-
gr.update(visible=True),
|
480 |
-
initial_state)
|
481 |
else:
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
|
489 |
except Exception as e:
|
490 |
error_msg = f"An error occurred: {str(e)}"
|
|
|
300 |
# dogs.append((cropped_image, confidence, xyxy))
|
301 |
# return dogs
|
302 |
|
303 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5):
|
304 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
305 |
+
# dogs = []
|
306 |
+
# for box in results.boxes:
|
307 |
+
# if box.cls == 16: # COCO 資料集中狗的類別是 16
|
308 |
+
# xyxy = box.xyxy[0].tolist()
|
309 |
+
# confidence = box.conf.item()
|
310 |
+
# cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
311 |
+
# dogs.append((cropped_image, confidence, xyxy))
|
312 |
+
# return dogs
|
313 |
+
# 此為如果後面調不好 使用的版本
|
314 |
+
|
315 |
+
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
|
316 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
317 |
dogs = []
|
318 |
+
all_boxes = []
|
319 |
+
|
320 |
+
# 首先收集所有可能的狗的邊界框
|
321 |
for box in results.boxes:
|
322 |
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
323 |
xyxy = box.xyxy[0].tolist()
|
324 |
confidence = box.conf.item()
|
325 |
+
all_boxes.append((xyxy, confidence))
|
326 |
+
|
327 |
+
# 按置信度排序
|
328 |
+
all_boxes.sort(key=lambda x: x[1], reverse=True)
|
329 |
+
|
330 |
+
# 應用非最大抑制
|
331 |
+
for box, confidence in all_boxes:
|
332 |
+
if not is_box_overlapping(box, [d[2] for d in dogs], iou_threshold):
|
333 |
+
cropped_image = image.crop((box[0], box[1], box[2], box[3]))
|
334 |
+
dogs.append((cropped_image, confidence, box))
|
335 |
+
|
336 |
+
# 如果沒有檢測到狗,嘗試降低閾值再次檢測
|
337 |
+
if len(dogs) == 0:
|
338 |
+
results = model_yolo(image, conf=conf_threshold/2, iou=iou_threshold)[0]
|
339 |
+
for box in results.boxes:
|
340 |
+
if box.cls == 16:
|
341 |
+
xyxy = box.xyxy[0].tolist()
|
342 |
+
confidence = box.conf.item()
|
343 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
344 |
+
dogs.append((cropped_image, confidence, xyxy))
|
345 |
+
|
346 |
return dogs
|
347 |
|
348 |
+
def is_box_overlapping(box, existing_boxes, iou_threshold):
|
349 |
+
for existing_box in existing_boxes:
|
350 |
+
if calculate_iou(box, existing_box) > iou_threshold:
|
351 |
+
return True
|
352 |
+
return False
|
353 |
+
|
354 |
+
def calculate_iou(box1, box2):
|
355 |
+
# 計算兩個邊界框的交集面積
|
356 |
+
x1 = max(box1[0], box2[0])
|
357 |
+
y1 = max(box1[1], box2[1])
|
358 |
+
x2 = min(box1[2], box2[2])
|
359 |
+
y2 = min(box1[3], box2[3])
|
360 |
+
|
361 |
+
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
362 |
+
|
363 |
+
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
364 |
+
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
365 |
+
|
366 |
+
iou = intersection / float(area1 + area2 - intersection)
|
367 |
+
return iou
|
368 |
+
|
369 |
|
370 |
# async def predict(image):
|
371 |
# if image is None:
|
|
|
487 |
if isinstance(image, np.ndarray):
|
488 |
image = Image.fromarray(image)
|
489 |
|
490 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.05, iou_threshold=0.45)
|
491 |
|
492 |
+
if len(dogs) == 0:
|
493 |
+
# 沒有檢測到狗,使用原始圖像進行單狗處理
|
494 |
return await process_single_dog(image)
|
495 |
+
elif len(dogs) == 1:
|
496 |
+
# 只檢測到一隻狗,使用裁剪後的圖像進行處理
|
497 |
+
return await process_single_dog(dogs[0][0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
else:
|
499 |
+
# 多狗情境
|
500 |
+
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
501 |
+
explanations = []
|
502 |
+
buttons = []
|
503 |
+
annotated_image = image.copy()
|
504 |
+
draw = ImageDraw.Draw(annotated_image)
|
505 |
+
font = ImageFont.load_default()
|
506 |
+
|
507 |
+
for i, (cropped_image, confidence, box) in enumerate(dogs):
|
508 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
509 |
+
color = color_list[i % len(color_list)]
|
510 |
+
draw.rectangle(box, outline=color, width=3)
|
511 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
512 |
+
|
513 |
+
breed = topk_breeds[0]
|
514 |
+
if top1_prob >= 0.5:
|
515 |
+
description = get_dog_description(breed)
|
516 |
+
formatted_description = format_description(description, breed)
|
517 |
+
explanations.append(f"Dog {i+1}: {formatted_description}")
|
518 |
+
elif top1_prob >= 0.2:
|
519 |
+
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
520 |
+
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
521 |
+
explanations.append(dog_explanation)
|
522 |
+
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
523 |
+
else:
|
524 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
525 |
+
|
526 |
+
final_explanation = "\n\n".join(explanations)
|
527 |
+
if buttons:
|
528 |
+
final_explanation += "\n\nClick on a button to view more information about the breed."
|
529 |
+
initial_state = {
|
530 |
+
"explanation": final_explanation,
|
531 |
+
"buttons": buttons,
|
532 |
+
"show_back": True
|
533 |
+
}
|
534 |
+
return (final_explanation, annotated_image,
|
535 |
+
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
536 |
+
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
537 |
+
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
538 |
+
gr.update(visible=True),
|
539 |
+
initial_state)
|
540 |
+
else:
|
541 |
+
initial_state = {
|
542 |
+
"explanation": final_explanation,
|
543 |
+
"buttons": [],
|
544 |
+
"show_back": False
|
545 |
+
}
|
546 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
547 |
|
548 |
except Exception as e:
|
549 |
error_msg = f"An error occurred: {str(e)}"
|