Spaces:
Runtime error
Runtime error
File size: 8,156 Bytes
bff6e6c fdcdc66 016347e 16d1ed2 8cfb96c 16d1ed2 3393a89 fdcdc66 bff6e6c aa41255 bfe2a73 d2dc178 8986465 8550b33 3393a89 aa41255 3393a89 aa41255 3393a89 aa41255 16d1ed2 aa41255 3393a89 16d1ed2 3393a89 16d1ed2 3393a89 16d1ed2 fdcdc66 16d1ed2 1bfc1f2 16d1ed2 1bfc1f2 16d1ed2 1bfc1f2 16d1ed2 8c29057 16d1ed2 53a3910 41d3948 53a3910 8c6d5ba 53a3910 1bfc1f2 16d1ed2 aa41255 53a3910 16d1ed2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from fastapi import File, UploadFile
from fastapi.responses import StreamingResponse
from typing import List
from pdf2image import convert_from_bytes
import csv
import io
from transformers import pipeline
app = FastAPI()
"""## Poppler dir"""
poppler_path = "poppler-23.11.0/Library/bin"
@app.post("/classify")
async def classify_doc(files: List[UploadFile] = File(...)):
classificationResults = {}
for file in files:
try:
contents = file.file.read()
filename = file.filename
if filename.endswith('.pdf'):
try:
pages = convert_from_bytes(contents, poppler_path = poppler_path)
print(pages)
for pagenum, image in enumerate(pages):
classificationRes, dtype_conf = doctype_classify(image.convert('RGB'), filename)
# add/update classification result dictionary
if (classificationRes in classificationResults):
classificationResults.update({classificationRes : classificationResults[classificationRes] + 1})
else:
classificationResults.update({classificationRes : 1})
except Exception as err:
print(err)
return f"Error in opening {filename}, {err}"
# png, jpg, jpeg files
else:
classificationRes = classify_acct_dtype_str(contents, filename)
# add/update classification result dictionary
if (classificationRes in classificationResults):
classificationResults.update({classificationRes : classificationResults[classificationRes] + 1})
else:
classificationResults.update({classificationRes : 1})
except Exception as err:
print(Exception, err)
return {"message": "There was an error in uploading file(s)"}
finally:
file.file.close()
# Convert dictionary to CSV string
csv_data = io.StringIO()
csv_writer = csv.writer(csv_data)
csv_writer.writerow(["Type", "Count"]) # Header row
for key, value in classificationResults.items():
csv_writer.writerow([key, value])
return StreamingResponse(
iter([csv_data.getvalue()]),
media_type="text/csv",
headers={"Content-Disposition": f"attachment; filename=data.csv"}
)
# return {"message": f"{[file.filename for file in files]} : {[classifyFiles(file) for file in files]}"}
def classifyFiles(file):
try:
contents = file.file.read()
filename = file.filename
classificationResults = []
if filename.endswith('.pdf'):
try:
pages = convert_from_bytes(open(file, 'rb').read())
for pagenum, image in enumerate(pages):
if pagenum != 0 and pagenum < len(pages):
classificationRes = classify_acct_dtype_str(contents, filename)
# classificationResults[f"{pagenum:02d}"] = {
# 'doctype': classificationRes
# }
except:
return f"Error in opening {filename}"
else:
classificationRes = classify_acct_dtype_str(contents, filename)
# classificationResults[f"{0:02d}"] = {
# 'doctype' : classificationRes
# }
except Exception as err:
print(Exception, err)
return {"message": "There was an error in uploading file(s)"}
finally:
file.file.close()
return classificationRes
app.mount("/", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/app/static/index.html", media_type="text/html")
import re
import torch
from transformers import DonutProcessor, VisionEncoderDecoderModel
from datasets import load_dataset
import os
from PIL import Image
# Doc classifier model
classifier_doctype_processor = DonutProcessor.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype")
classifier_doctype_model = VisionEncoderDecoderModel.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype")
"""### Inference Code"""
def inference(input, model, processor, threshold=1.0, task_prompt="", get_confidence=False):
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
is_confident = True
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
pil_img=input
image = np.array(pil_img)
pixel_values = processor(image, return_tensors="pt").pixel_values
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id= processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
output_scores=True,
)
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
seq = processor.token2json(sequence)
if get_confidence:
return seq, pred_confidence(outputs.scores, threshold)
return seq
def pred_confidence(output_scores, threshold):
is_confident=True
for score in output_scores:
exp_scores = np.exp(score[0].cpu().numpy()) # scores are logits, we use the exp function so that all values are positive
sum_exp = np.sum(exp_scores) # taking the sum of the token scores
idx = np.argmax(exp_scores) # taking the index of the token with the highest score
prob_max = exp_scores[idx]/sum_exp # normalizing the token with the highest score wrt the sum of all scores. Returns probability
if prob_max < threshold:
is_confident = False
# print(prob_max)
return is_confident
CUDA_LAUNCH_BLOCKING=1
def parse_text(input, filename):
model = base_model
processor = base_processor
seq = inference(input, model, processor, task_prompt="<s_synthdog>")
return str(seq)
def doctype_classify(input, filename):
model = classifier_doctype_model
processor = classifier_doctype_processor
seq, is_confident = inference(input, model, processor, threshold=0.90, task_prompt="<s_classifier_acct>", get_confidence=True)
return seq.get('class'), is_confident
def account_classify(input, filename):
model = classifier_account_model
processor = classifier_account_processor
seq, is_confident = inference(input, model, processor, threshold=0.999, task_prompt="<s_classifier_acct>", get_confidence=True)
return seq.get('class'), is_confident
"""## Text processing/string matcher code"""
import locale
locale.getpreferredencoding = lambda: "UTF-8"
"""## Classify Document Images"""
import numpy as np
import csv
import re
import os
import requests
from io import BytesIO
def classify_acct_dtype_str(content, filename):
# response = requests.get("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
# ipt = Image.open(BytesIO(response.content))
try:
ipt = Image.open(BytesIO(content))
dtype_inf, dtype_conf = doctype_classify(ipt, filename)
except Exception as err:
return f"Error in opening {filename}, {err}"
return dtype_inf
# classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg") |