Spaces:
Runtime error
Runtime error
fix: output not shown for all input docs
Browse files- main.py +132 -29
- static/script.js +4 -0
main.py
CHANGED
@@ -2,7 +2,9 @@ from fastapi import FastAPI
|
|
2 |
from fastapi.staticfiles import StaticFiles
|
3 |
from fastapi.responses import FileResponse
|
4 |
from fastapi import File, UploadFile
|
|
|
5 |
from typing import List
|
|
|
6 |
|
7 |
from transformers import pipeline
|
8 |
|
@@ -17,45 +19,141 @@ def t5(input):
|
|
17 |
return {"output": output[0]["generated_text"]}
|
18 |
|
19 |
|
20 |
-
# @app.post("/classify/")
|
21 |
-
# async def classify_doc(file: UploadFile):
|
22 |
-
# return {"file_size": len(file)}
|
23 |
-
|
24 |
@app.post("/classify")
|
25 |
async def classify_doc(files: List[UploadFile] = File(...)):
|
26 |
-
#
|
27 |
-
#
|
28 |
-
#
|
29 |
-
#
|
30 |
-
#
|
31 |
-
# except Exception as err:
|
32 |
-
# print(Exception, err)
|
33 |
-
# return {"message": "There was an error in uploading file(s)"}
|
34 |
-
# finally:
|
35 |
-
# file.file.close()
|
36 |
-
return {"message": f"{[file.filename for file in files]} : {[getDocClassType(file) for file in files]}"}
|
37 |
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
@app.get("/")
|
42 |
-
def index() -> FileResponse:
|
43 |
-
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
44 |
|
45 |
|
46 |
-
|
47 |
-
|
|
|
48 |
try:
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as err:
|
53 |
print(Exception, err)
|
54 |
-
return {"
|
55 |
finally:
|
56 |
file.file.close()
|
57 |
|
58 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
import re
|
@@ -161,9 +259,14 @@ import requests
|
|
161 |
from io import BytesIO
|
162 |
|
163 |
def classify_acct_dtype_str(content, filename):
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
return dtype_inf
|
168 |
|
169 |
-
# classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
|
|
|
2 |
from fastapi.staticfiles import StaticFiles
|
3 |
from fastapi.responses import FileResponse
|
4 |
from fastapi import File, UploadFile
|
5 |
+
from fastapi.responses import StreamingResponse
|
6 |
from typing import List
|
7 |
+
from pdf2image import convert_from_bytes
|
8 |
|
9 |
from transformers import pipeline
|
10 |
|
|
|
19 |
return {"output": output[0]["generated_text"]}
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
22 |
@app.post("/classify")
|
23 |
async def classify_doc(files: List[UploadFile] = File(...)):
|
24 |
+
# classificationResults = {}
|
25 |
+
# for file in files:
|
26 |
+
# try:
|
27 |
+
# contents = file.file.read()
|
28 |
+
# filename = file.filename
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
+
# if filename.endswith('.pdf'):
|
32 |
+
# try:
|
33 |
+
# pages = convert_from_bytes(open(file, 'rb').read())
|
34 |
+
|
35 |
+
# for pagenum, image in enumerate(pages):
|
36 |
+
# if pagenum != 0 and pagenum < len(pages):
|
37 |
+
# classificationRes = classify_acct_dtype_str(contents, filename)
|
38 |
+
# classificationResults[f'{pagenum:02d}'] = {
|
39 |
+
# 'doctype': classificationRes
|
40 |
+
# }
|
41 |
+
# except:
|
42 |
+
# return f"Error in opening {filename}"
|
43 |
+
|
44 |
+
# else:
|
45 |
+
# classificationRes = classify_acct_dtype_str(contents, filename)
|
46 |
+
# classificationResults[f'{0:02d}'] = {
|
47 |
+
# 'doctype' : classificationRes
|
48 |
+
# }
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
# except Exception as err:
|
54 |
+
# print(Exception, err)
|
55 |
+
# return {"message": "There was an error in uploading file(s)"}
|
56 |
+
# finally:
|
57 |
+
# file.file.close()
|
58 |
+
|
59 |
+
# return StreamingResponse(
|
60 |
+
# iter(classificationResults.items()),
|
61 |
+
# media_type="text/csv",
|
62 |
+
# headers={"Content-Disposition": f"attachment; filename=data.csv"}
|
63 |
+
# )
|
64 |
+
|
65 |
+
return {"message": f"{[file.filename for file in files]} : {[classifyFiles(file) for file in files]}"}
|
66 |
+
|
67 |
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
+
|
71 |
+
|
72 |
+
def classifyFiles(file):
|
73 |
try:
|
74 |
+
contents = file.file.read()
|
75 |
+
filename = file.filename
|
76 |
+
|
77 |
+
classificationResults = []
|
78 |
+
|
79 |
+
if filename.endswith('.pdf'):
|
80 |
+
try:
|
81 |
+
pages = convert_from_bytes(open(file, 'rb').read())
|
82 |
+
|
83 |
+
for pagenum, image in enumerate(pages):
|
84 |
+
if pagenum != 0 and pagenum < len(pages):
|
85 |
+
classificationRes = classify_acct_dtype_str(contents, filename)
|
86 |
+
# classificationResults[f"{pagenum:02d}"] = {
|
87 |
+
# 'doctype': classificationRes
|
88 |
+
# }
|
89 |
+
except:
|
90 |
+
return f"Error in opening {filename}"
|
91 |
+
|
92 |
+
else:
|
93 |
+
classificationRes = classify_acct_dtype_str(contents, filename)
|
94 |
+
# classificationResults[f"{0:02d}"] = {
|
95 |
+
# 'doctype' : classificationRes
|
96 |
+
# }
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
except Exception as err:
|
102 |
print(Exception, err)
|
103 |
+
return {"message": "There was an error in uploading file(s)"}
|
104 |
finally:
|
105 |
file.file.close()
|
106 |
|
107 |
+
return classificationRes
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
# # dict for counting doctypes
|
112 |
+
# doctype_dict = dict()
|
113 |
+
|
114 |
+
# # writer for csv
|
115 |
+
# with open("{}/doctype_count.csv".format(output_dir), 'w', newline='') as outcsv:
|
116 |
+
# writer = csv.writer(outcsv)
|
117 |
+
# writer.writerow(["Type", "Count"])
|
118 |
+
|
119 |
+
# for file in files:
|
120 |
+
# try:
|
121 |
+
# contents = file.file.read()
|
122 |
+
# classify_res = classify_acct_dtype_str(BytesIO(contents))
|
123 |
+
# except Exception as err:
|
124 |
+
# print(Exception, err)
|
125 |
+
# return {"message": "There was an error in uploading file(s)"}
|
126 |
+
# finally:
|
127 |
+
# file.file.close()
|
128 |
+
|
129 |
+
# print(classify_res)
|
130 |
+
|
131 |
+
# if (classify_res in doctype_dict):
|
132 |
+
# doctype_dict.update({classify_res : doctype_dict[classify_res] + 1})
|
133 |
+
# else:
|
134 |
+
# doctype_dict.update({classify_res : 1})
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
# export_media_type = 'text/csv'
|
139 |
+
# export_headers = {
|
140 |
+
# "Content-Disposition": "attachment; filename={file_name}.csv".format(file_name="output")
|
141 |
+
# }
|
142 |
+
# return StreamingResponse(csv_file_binary, headers=export_headers, media_type=export_media_type)
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
151 |
+
|
152 |
+
@app.get("/")
|
153 |
+
def index() -> FileResponse:
|
154 |
+
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
155 |
+
|
156 |
+
|
157 |
|
158 |
|
159 |
import re
|
|
|
259 |
from io import BytesIO
|
260 |
|
261 |
def classify_acct_dtype_str(content, filename):
|
262 |
+
# response = requests.get("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
|
263 |
+
# ipt = Image.open(BytesIO(response.content))
|
264 |
+
try:
|
265 |
+
ipt = Image.open(BytesIO(content))
|
266 |
+
dtype_inf, dtype_conf = doctype_classify(ipt, filename)
|
267 |
+
except:
|
268 |
+
return f"Error in opening {filename}"
|
269 |
|
270 |
return dtype_inf
|
271 |
|
272 |
+
# classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
|
static/script.js
CHANGED
@@ -45,6 +45,7 @@ async function submitImages(acceptedFiles) {
|
|
45 |
body: formData
|
46 |
});
|
47 |
let res = classifyResponse.json();
|
|
|
48 |
return res;
|
49 |
}
|
50 |
|
@@ -54,9 +55,12 @@ let imageArray = [];
|
|
54 |
|
55 |
inputImg.addEventListener("change", async event =>{
|
56 |
const files = event.target.files;
|
|
|
57 |
await submitImages(files).then((resultText) => {
|
58 |
outputImg.innerText = "Result: " + resultText["message"];
|
59 |
});
|
|
|
|
|
60 |
|
61 |
const classifyBtn = document.getElementById('classify-btn');
|
62 |
const outputPar = document.getElementById('test-output');
|
|
|
45 |
body: formData
|
46 |
});
|
47 |
let res = classifyResponse.json();
|
48 |
+
console.log(res);
|
49 |
return res;
|
50 |
}
|
51 |
|
|
|
55 |
|
56 |
inputImg.addEventListener("change", async event =>{
|
57 |
const files = event.target.files;
|
58 |
+
console.log(files);
|
59 |
await submitImages(files).then((resultText) => {
|
60 |
outputImg.innerText = "Result: " + resultText["message"];
|
61 |
});
|
62 |
+
// outputImg.innerText = "Result is: " + await submitImages(files);
|
63 |
+
});
|
64 |
|
65 |
const classifyBtn = document.getElementById('classify-btn');
|
66 |
const outputPar = document.getElementById('test-output');
|