Spaces:
Runtime error
Runtime error
test: classification model
Browse files
main.py
CHANGED
@@ -11,8 +11,9 @@ pipe_flan = pipeline("text2text-generation", model="google/flan-t5-small")
|
|
11 |
|
12 |
@app.get("/infer_t5")
|
13 |
def t5(input):
|
14 |
-
output = pipe_flan(input)
|
15 |
-
return {"output": output[0]["generated_text"]}
|
|
|
16 |
|
17 |
|
18 |
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
@@ -22,6 +23,114 @@ def index() -> FileResponse:
|
|
22 |
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
23 |
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
@app.get("/infer_t5")
|
13 |
def t5(input):
|
14 |
+
# output = pipe_flan(input)
|
15 |
+
# return {"output": output[0]["generated_text"]}
|
16 |
+
return classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
|
17 |
|
18 |
|
19 |
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
|
|
23 |
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
24 |
|
25 |
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
# Doc classifier model
|
32 |
+
classifier_doctype_processor = DonutProcessor.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype")
|
33 |
+
classifier_doctype_model = VisionEncoderDecoderModel.from_pretrained("calumpianojericho/donutclassifier_acctdocs_by_doctype")
|
34 |
+
|
35 |
+
|
36 |
+
"""### Inference Code"""
|
37 |
+
|
38 |
+
def inference(input, model, processor, threshold=1.0, task_prompt="", get_confidence=False):
|
39 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
+
model.to(device)
|
41 |
+
is_confident = True
|
42 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
43 |
+
|
44 |
+
pil_img=input
|
45 |
+
|
46 |
+
image = np.array(pil_img)
|
47 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
48 |
+
|
49 |
+
outputs = model.generate(
|
50 |
+
pixel_values.to(device),
|
51 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
52 |
+
max_length=model.decoder.config.max_position_embeddings,
|
53 |
+
early_stopping=True,
|
54 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
55 |
+
eos_token_id= processor.tokenizer.eos_token_id,
|
56 |
+
use_cache=True,
|
57 |
+
num_beams=1,
|
58 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
59 |
+
return_dict_in_generate=True,
|
60 |
+
output_scores=True,
|
61 |
+
)
|
62 |
+
|
63 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
64 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
65 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
66 |
+
|
67 |
+
seq = processor.token2json(sequence)
|
68 |
+
if get_confidence:
|
69 |
+
return seq, pred_confidence(outputs.scores, threshold)
|
70 |
+
|
71 |
+
return seq
|
72 |
+
|
73 |
+
def pred_confidence(output_scores, threshold):
|
74 |
+
is_confident=True
|
75 |
+
|
76 |
+
for score in output_scores:
|
77 |
+
exp_scores = np.exp(score[0].cpu().numpy()) # scores are logits, we use the exp function so that all values are positive
|
78 |
+
sum_exp = np.sum(exp_scores) # taking the sum of the token scores
|
79 |
+
idx = np.argmax(exp_scores) # taking the index of the token with the highest score
|
80 |
+
prob_max = exp_scores[idx]/sum_exp # normalizing the token with the highest score wrt the sum of all scores. Returns probability
|
81 |
+
if prob_max < threshold:
|
82 |
+
is_confident = False
|
83 |
+
# print(prob_max)
|
84 |
+
|
85 |
+
|
86 |
+
return is_confident
|
87 |
+
|
88 |
+
|
89 |
+
CUDA_LAUNCH_BLOCKING=1
|
90 |
+
def parse_text(input, filename):
|
91 |
+
model = base_model
|
92 |
+
processor = base_processor
|
93 |
+
seq = inference(input, model, processor, task_prompt="<s_synthdog>")
|
94 |
+
return str(seq)
|
95 |
+
|
96 |
+
def doctype_classify(input, filename):
|
97 |
+
model = classifier_doctype_model
|
98 |
+
processor = classifier_doctype_processor
|
99 |
+
seq, is_confident = inference(input, model, processor, threshold=0.90, task_prompt="<s_classifier_acct>", get_confidence=True)
|
100 |
+
return seq.get('class'), is_confident
|
101 |
+
|
102 |
+
def account_classify(input, filename):
|
103 |
+
model = classifier_account_model
|
104 |
+
processor = classifier_account_processor
|
105 |
+
seq, is_confident = inference(input, model, processor, threshold=0.999, task_prompt="<s_classifier_acct>", get_confidence=True)
|
106 |
+
return seq.get('class'), is_confident
|
107 |
+
|
108 |
+
"""## Text processing/string matcher code"""
|
109 |
+
|
110 |
+
import locale
|
111 |
+
locale.getpreferredencoding = lambda: "UTF-8"
|
112 |
+
|
113 |
+
|
114 |
+
"""## Text processing/string matcher code"""
|
115 |
+
|
116 |
+
import locale
|
117 |
+
locale.getpreferredencoding = lambda: "UTF-8"
|
118 |
+
|
119 |
+
|
120 |
+
"""## Classify Document Images"""
|
121 |
+
|
122 |
+
import numpy as np
|
123 |
+
import csv
|
124 |
+
import re
|
125 |
+
import os
|
126 |
+
|
127 |
+
|
128 |
+
import requests
|
129 |
+
|
130 |
+
def classify_acct_dtype_str(input_path):
|
131 |
+
response = requests.get("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
|
132 |
+
dtype_inf, dtype_conf = doctype_classify(response, "city-streets.jpg")
|
133 |
+
|
134 |
+
return dtype_inf
|
135 |
+
|
136 |
+
classify_acct_dtype_str("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg")
|