File size: 11,314 Bytes
84780b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325cbc
84780b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b6566
84780b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5310748
84780b0
 
 
 
 
5310748
84780b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e26368
84780b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f510144
84780b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04bb8f6
84780b0
 
 
 
 
330c4f0
84780b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6394e
84780b0
 
 
 
 
 
 
bf31f1c
84780b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f510144
84780b0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import pickle
import shutil
import pandas as pd
import gradio as gr
from config import PATHS
from smolagents import CodeAgent, InferenceClientModel, tool
from sqlalchemy import (
    create_engine,
    MetaData,
    Table,
    Column,
    String,
    Integer,
    Float,
    insert,
    inspect,
    text,
    exc,
)
# initialize sql engine
engine = create_engine("sqlite:///agentDB.db")
metadata_obj = MetaData()

def load_rows():
    """
       Loads dictionary with orient = list populated with column names as key and all the values in the column in a list.
           Args:
               None
           Returns:
               col_names (list): The list of column names.
               rows (list): list of rows containing values from each column.
               num_cols (int): Number of columns.
       """
    # load dict from pickle
    with open(PATHS.PKL_FILE_PATH, "rb") as f:
        sql_dict = pickle.load(f)
    print(sql_dict)
    # collect column names
    col_names = list(sql_dict.keys())
    num_cols = len(col_names)

    # Ensure the dictionary is not empty
    if not col_names:
        raise ValueError("The dictionary is empty.")

    # collect table rows from dict
    num_rows = len(sql_dict[col_names[0]])
    rows = []
    # Iterate through dict collecting each columns info as a row
    for i in range(num_rows):
        row = {}
        for col in col_names:
            value = sql_dict[col][i]
            row[col] = value
        rows.append(row)
    return col_names, rows, num_cols

def insert_rows(rows, table, engine = engine):
    """
       Insert rows into table.
           Args:
               rows (dict): Dictionary of rows to be inserted with column names as keys.
               table (sqlalchemy.Table): Table to be inserted.
               engine (sqlalchemy.engine): SQLAlchemy engine to be used.
           Returns:
               None
       """
    for row in rows:
        stmt = insert(table).values(**row)
        with engine.begin() as connection:
            connection.execute(stmt)


def create_dynamic_table(table_name, columns):
    """
       Creates an sql table dynamically.
           Args:
               table_name (String): name of the table
               columns (list): list of column names
           Returns:
               table: The table object.
       """
    print(columns)
    table = Table(
        table_name,
        metadata_obj,
  Column('id', Integer, primary_key=True),
        *[Column(name, type_) for name, type_ in columns.items()],
        extend_existing=True
    )
    return table


def update_table(column_type):
    """
       Updates table with columns from gradio textbox. Calls load_rows() to read pkl file and get rows dict, column names, and number.
       Raises relevant error if number of data types does not match number of columns, if the user did not input a recognized data type, and if there are any errors inserting the rows.
           Args:
               column_type (String): The user inputed comma separated column data types.
           Returns:
                (String): Sucess message when no errors, the error that was raised when failure.
    """
    # load rows for the table
    col_names, rows, num_cols = load_rows()
    # split str into list of data types
    dataType_list = column_type.split(",")
    try:
        if len(dataType_list) != len(col_names):
            raise ValueError()
        for i in range(len(dataType_list)):
            match dataType_list[i].strip():
                case "String":
                    dataType_list[i] = String
                case "Integer":
                    dataType_list[i] = Integer
                case "Float":
                    dataType_list[i] = Float
            if dataType_list[i] != String and dataType_list[i] != Float and dataType_list[i] != Integer:
                raise TypeError()
    except TypeError as e:
        return f"A data type you entered was invalid."
    except ValueError as e:
        return f"{e}. Number of data types ({len(dataType_list)}) does not match number of columns ({len(col_names)})."

    # Dynamically create the columns dictionary
    columns = {
        col_name: dataType_list[i]  # Map column name to data type by index
        for i, col_name in enumerate(col_names)
    }
    len_cols = len(columns)
    dynamic_table = create_dynamic_table(PATHS.TABLE_NAME, columns)
    metadata_obj.create_all(engine)

    try:
        insert_rows(rows, dynamic_table)
    except exc.CompileError as e:
        return (f"{e}.")
    except exc.OperationalError as e:
        return (f"{e}. agentDB has already had it's schema defined.")
    return "Row insertion succesful"


def table_description():
   """
   Generates a description of the table to feed to agent prompt.
       Args:
           None
       Returns:
           table_description (String): The table's column names and their data types.
   """
   inspector = inspect(engine)
   try:
       columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(PATHS.TABLE_NAME)]
       table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
   except exc.NoSuchTableError as e:
        return f"NoSuchTableError: {e}. The referenced table does not exist."
   return table_description

def table_check()-> str:
    """
    Verify the table exists. Returns a string which will say if the table exists or not.
        Args:
            None
        Returns:
            (String): A message containing table status.
    """
    inspector = inspect(engine)
    try:
        if inspector.has_table(PATHS.TABLE_NAME):
            return f"Table '{PATHS.TABLE_NAME}' exists."
        else:
            raise exc.NoSuchTableError()
    except exc.NoSuchTableError as e:
        return f"NoSuchTableError: {e} The referenced table does not exist."


@tool
def sql_engine(query: str) -> str:
    """
    Allows you to perform SQL queries on the table. Returns a string representation of the result.
        The Table is named agent_table.
        Args:
            query: The query to be performed on the table. This should always be correct SQL.
        """
    output = ""

    with engine.begin() as con:
        try:
            rows = con.execution_options(autocommit=True).execute(text(query))
            if not rows:
                return "No rows found, include the `RETURNING` keyword to ensure the result object always returns rows."
            else:
                for row in rows:
                    output += str(row) + "\n"
        except exc.SQLAlchemyError as e:
            return f"{e}. Include the `RETURNING` keyword to ensure the result object always returns rows."
    return output


def agent_setup():
    NEBIUS_API_KEY = os.environ.get('NEBIUS_API_KEY')
    """
        Initialize the inference client, as well as the sql agent.
            Args:
                None
            Returns:
                sql_agent (CodeAgent): The agent that will be used for inference.
            """
    sql_model = InferenceClientModel(
        api_key=NEBIUS_API_KEY,
        model_id="Qwen/Qwen3-235B-A22B",  # Qwen/Qwen3-4B
        provider="nebius",
    )
    # define SQL Agent
    sql_agent = CodeAgent(
        tools=[sql_engine],
        model=sql_model,
        max_steps=5,
    )
    return sql_agent

def run_prompt(prompt, history):
    """
        Initialize the inference client, as well as the sql agent.
            Args:
                prompt (String): The user's query to be fed to the agent.
                history (Any):
            Returns:
                sql_agent (Agent): The agent that will be used for inference.
            """
    table_descrip = table_description()
    table_status = table_check()
    if "NoSuchTableError" in table_status:
        return table_status + " Check the table has the expected name and it is consistent."
    return agent.run(prompt + f". Always wrap the result in relevant context and enforce the results object returning rows. Table description is as follows:{table_descrip}")


def vote(data: gr.LikeData):
    """
        Provide feedback to agent's response.
            Args:
                data (LikeData): carries information about the .like() event.
            Returns:
                None
            """
    if data.liked:
        print("You upvoted this response: " + data.value["value"])
    else:
        print("You downvoted this response: " + data.value["value"])


def process_file(fileobj):
    """
        Save file to temporary folder.
            Args:
                fileobj (Any): The uploaded file.
            Returns:
                None (calls csv_2_dict)
            """
    csv_path = PATHS.TEMP_PATH + os.path.basename(fileobj)
    # copy file to path
    shutil.copyfile(fileobj.name, csv_path)
    return csv_2_dict(csv_path)


def csv_2_dict(path):
    """
        Reads csv as a dataframe which is converted to a dictionary that is written to a pkl file in the temporary folder.
            Args:
                path (Any): The temporary file path.
            Returns:
                None
            """
    # read csv as dataframe then drop empties
    df = pd.read_csv(path)
    df_cleaned = df.dropna()
    # convert dataframe to a dictionary and save as pickle file
    table_data = df_cleaned.to_dict(orient='list')
    with open(PATHS.PKL_FILE_PATH, "wb") as f:
        pickle.dump(table_data, f)


def change_insert_mode(choice):
    """
        Drops table if user elects to upload a new table passes if no table to drop or user chooses to upload to existing table.
            Args:
                choice (Any): The name of the radio button the user has selected.
            Returns:
                None
            """
    table_status = table_check()
    if choice == "Upload New" and not "NoSuchTableError" in table_status:
        # sql_engine(f"DROP COLUMN *;")
        sql_engine(f"DROP TABLE {PATHS.TABLE_NAME};")
    else:
        pass

with gr.Blocks() as demo:
    with gr.Tab("Table Setup"):
        insert_mode = gr.Radio(["Upload New", "Upload to Existing"], label="Insertion Mode",
                               info="Warning selecting Upload New will immediately drop existing table, leaving unselected will add to existing table.")
        insert_mode.input(fn=change_insert_mode, inputs=insert_mode, outputs=None)
        gr.Markdown("Next upload the csv:")
        gr.Interface(
            fn=process_file,
            inputs=[
                "file",
            ],
            outputs=None,
            flagging_mode="never"
        )
        column_type = gr.Textbox(label="Enter column data types (String, Integer, Float) as a comma seperated list:")
        column_type_message = gr.Textbox(label="Feedback:")
        col_type_button = gr.Button("Submit")
        col_type_button.click(update_table, inputs=column_type, outputs=[column_type_message, ])
    with gr.Tab("Text2SQL Agent"):
        chatbot = gr.Chatbot(type="messages", placeholder=f"<strong>Ask agent to perform a query.</strong>")
        chatbot.like(vote, None, None)
        gr.ChatInterface(fn=run_prompt, type="messages", chatbot=chatbot)

if __name__ == "__main__":
    # initialize agent 
    agent = agent_setup()

    demo.launch(debug=True)