Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
+
import shutil
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from config import PATHS
|
| 7 |
+
from secret_keys import *
|
| 8 |
+
from smolagents import CodeAgent, InferenceClientModel, tool
|
| 9 |
+
from sqlalchemy import (
|
| 10 |
+
create_engine,
|
| 11 |
+
MetaData,
|
| 12 |
+
Table,
|
| 13 |
+
Column,
|
| 14 |
+
String,
|
| 15 |
+
Integer,
|
| 16 |
+
Float,
|
| 17 |
+
insert,
|
| 18 |
+
inspect,
|
| 19 |
+
text,
|
| 20 |
+
exc,
|
| 21 |
+
)
|
| 22 |
+
engine = create_engine("sqlite:///agentDB.db")
|
| 23 |
+
metadata_obj = MetaData()
|
| 24 |
+
|
| 25 |
+
def load_rows():
|
| 26 |
+
"""
|
| 27 |
+
Loads dictionary with orient = list populated with column names as key and all the values in the column in a list.
|
| 28 |
+
Args:
|
| 29 |
+
None
|
| 30 |
+
Returns:
|
| 31 |
+
col_names (list): The list of column names.
|
| 32 |
+
rows (list): list of rows containing values from each column.
|
| 33 |
+
num_cols (int): Number of columns.
|
| 34 |
+
"""
|
| 35 |
+
# load dict from pickle
|
| 36 |
+
with open(PATHS.PKL_FILE_PATH, "rb") as f:
|
| 37 |
+
sql_dict = pickle.load(f)
|
| 38 |
+
|
| 39 |
+
# collect column names
|
| 40 |
+
col_names = list(sql_dict.keys())
|
| 41 |
+
num_cols = len(col_names)
|
| 42 |
+
|
| 43 |
+
# Ensure the dictionary is not empty
|
| 44 |
+
if not col_names:
|
| 45 |
+
raise ValueError("The dictionary is empty.")
|
| 46 |
+
|
| 47 |
+
# collect table rows from dict
|
| 48 |
+
num_rows = len(sql_dict[col_names[0]])
|
| 49 |
+
rows = []
|
| 50 |
+
# Iterate through dict collecting each columns info as a row
|
| 51 |
+
for i in range(num_rows):
|
| 52 |
+
row = {}
|
| 53 |
+
for col in col_names:
|
| 54 |
+
value = sql_dict[col][i]
|
| 55 |
+
row[col] = value
|
| 56 |
+
rows.append(row)
|
| 57 |
+
return col_names, rows, num_cols
|
| 58 |
+
|
| 59 |
+
def insert_rows(rows, table, engine = engine):
|
| 60 |
+
"""
|
| 61 |
+
Insert rows into table.
|
| 62 |
+
Args:
|
| 63 |
+
rows (dict): Dictionary of rows to be inserted with column names as keys.
|
| 64 |
+
table (sqlalchemy.Table): Table to be inserted.
|
| 65 |
+
engine (sqlalchemy.engine): SQLAlchemy engine to be used.
|
| 66 |
+
Returns:
|
| 67 |
+
None
|
| 68 |
+
"""
|
| 69 |
+
for row in rows:
|
| 70 |
+
stmt = insert(table).values(**row)
|
| 71 |
+
with engine.begin() as connection:
|
| 72 |
+
connection.execute(stmt)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def create_dynamic_table(table_name, columns):
|
| 76 |
+
"""
|
| 77 |
+
Creates an sql table dynamically.
|
| 78 |
+
Args:
|
| 79 |
+
table_name (String): name of the table
|
| 80 |
+
columns (list): list of column names
|
| 81 |
+
Returns:
|
| 82 |
+
table: The table object.
|
| 83 |
+
"""
|
| 84 |
+
table = Table(
|
| 85 |
+
table_name,
|
| 86 |
+
metadata_obj,
|
| 87 |
+
Column('id', Integer, primary_key=True),
|
| 88 |
+
*[Column(name, type_) for name, type_ in columns.items()],
|
| 89 |
+
extend_existing=True
|
| 90 |
+
)
|
| 91 |
+
return table
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def update_table(column_type):
|
| 95 |
+
"""
|
| 96 |
+
Updates table with columns from gradio textbox. Calls load_rows() to read pkl file and get rows dict, column names, and number.
|
| 97 |
+
Raises relevant error if number of data types does not match number of columns, if the user did not input a recognized data type, and if there are any errors inserting the rows.
|
| 98 |
+
Args:
|
| 99 |
+
column_type (String): The user inputed comma separated column data types.
|
| 100 |
+
Returns:
|
| 101 |
+
(String): Sucess message when no errors, the error that was raised when failure.
|
| 102 |
+
"""
|
| 103 |
+
# load rows for the table
|
| 104 |
+
col_names, rows, num_cols = load_rows()
|
| 105 |
+
# split str into list of data types
|
| 106 |
+
dataType_list = column_type.split(",")
|
| 107 |
+
try:
|
| 108 |
+
if len(dataType_list) != len(col_names):
|
| 109 |
+
raise ValueError()
|
| 110 |
+
for i in range(len(dataType_list)):
|
| 111 |
+
match dataType_list[i].strip():
|
| 112 |
+
case "String":
|
| 113 |
+
dataType_list[i] = String
|
| 114 |
+
case "Integer":
|
| 115 |
+
dataType_list[i] = Integer
|
| 116 |
+
case "Float":
|
| 117 |
+
dataType_list[i] = Float
|
| 118 |
+
if dataType_list[i] != String and dataType_list[i] != Float and dataType_list[i] != Integer:
|
| 119 |
+
raise TypeError()
|
| 120 |
+
except TypeError as e:
|
| 121 |
+
return f"A data type you entered was invalid."
|
| 122 |
+
except ValueError as e:
|
| 123 |
+
return f"{e}. Number of data types ({len(dataType_list)}) does not match number of columns ({len(col_names)})."
|
| 124 |
+
|
| 125 |
+
# Dynamically create the columns dictionary
|
| 126 |
+
columns = {
|
| 127 |
+
col_name: dataType_list[i] # Map column name to data type by index
|
| 128 |
+
for i, col_name in enumerate(col_names)
|
| 129 |
+
}
|
| 130 |
+
len_cols = len(columns)
|
| 131 |
+
dynamic_table = create_dynamic_table(PATHS.TABLE_NAME, columns)
|
| 132 |
+
metadata_obj.create_all(engine)
|
| 133 |
+
|
| 134 |
+
try:
|
| 135 |
+
insert_rows(rows, dynamic_table)
|
| 136 |
+
except exc.CompileError as e:
|
| 137 |
+
return (f"{e}.")
|
| 138 |
+
except exc.OperationalError as e:
|
| 139 |
+
return (f"{e}. agentDB has already had it's schema defined.")
|
| 140 |
+
return "Row insertion succesful"
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def table_description():
|
| 144 |
+
"""
|
| 145 |
+
Generates a description of the table to feed to agent prompt.
|
| 146 |
+
Args:
|
| 147 |
+
None
|
| 148 |
+
Returns:
|
| 149 |
+
table_description (String): The table's column names and their data types.
|
| 150 |
+
"""
|
| 151 |
+
inspector = inspect(engine)
|
| 152 |
+
try:
|
| 153 |
+
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns(PATHS.TABLE_NAME)]
|
| 154 |
+
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
|
| 155 |
+
except exc.NoSuchTableError as e:
|
| 156 |
+
return f"NoSuchTableError: {e}. The referenced table does not exist."
|
| 157 |
+
return table_description
|
| 158 |
+
|
| 159 |
+
def table_check()-> str:
|
| 160 |
+
"""
|
| 161 |
+
Verify the table exists. Returns a string which will say if the table exists or not.
|
| 162 |
+
Args:
|
| 163 |
+
None
|
| 164 |
+
Returns:
|
| 165 |
+
(String): A message containing table status.
|
| 166 |
+
"""
|
| 167 |
+
try:
|
| 168 |
+
inspector = inspect(engine)
|
| 169 |
+
if inspector.has_table(PATHS.TABLE_NAME):
|
| 170 |
+
return f"Table '{PATHS.TABLE_NAME}' exists."
|
| 171 |
+
else:
|
| 172 |
+
raise exc.NoSuchTableError()
|
| 173 |
+
except exc.NoSuchTableError as e:
|
| 174 |
+
return f"NoSuchTableError: {e} The referenced table does not exist."
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
@tool
|
| 178 |
+
def sql_engine(query: str) -> str:
|
| 179 |
+
"""
|
| 180 |
+
Allows you to perform SQL queries on the table. Returns a string representation of the result.
|
| 181 |
+
The Table is named agent_table.
|
| 182 |
+
Args:
|
| 183 |
+
query: The query to be performed on the table. This should always be correct SQL.
|
| 184 |
+
"""
|
| 185 |
+
output = ""
|
| 186 |
+
|
| 187 |
+
with engine.begin() as con:
|
| 188 |
+
try:
|
| 189 |
+
rows = con.execution_options(autocommit=True).execute(text(query))
|
| 190 |
+
if not rows:
|
| 191 |
+
return "No rows found, include the `RETURNING` keyword to ensure the result object always returns rows."
|
| 192 |
+
else:
|
| 193 |
+
for row in rows:
|
| 194 |
+
output += str(row) + "\n"
|
| 195 |
+
except exc.SQLAlchemyError as e:
|
| 196 |
+
return f"{e}. Include the `RETURNING` keyword to ensure the result object always returns rows."
|
| 197 |
+
return output
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def agent_setup():
|
| 201 |
+
"""
|
| 202 |
+
Initialize the inference client, as well as the sql agent.
|
| 203 |
+
Args:
|
| 204 |
+
None
|
| 205 |
+
Returns:
|
| 206 |
+
sql_agent (Agent): The agent that will be used for inference.
|
| 207 |
+
"""
|
| 208 |
+
sql_model = InferenceClientModel(
|
| 209 |
+
api_key=NEBIUS_API_KEY,
|
| 210 |
+
model_id="Qwen/Qwen3-235B-A22B", # Qwen/Qwen3-4B
|
| 211 |
+
provider="nebius",
|
| 212 |
+
)
|
| 213 |
+
# define SQL Agent
|
| 214 |
+
sql_agent = CodeAgent(
|
| 215 |
+
tools=[sql_engine],
|
| 216 |
+
model=sql_model,
|
| 217 |
+
max_steps=5,
|
| 218 |
+
)
|
| 219 |
+
return sql_agent
|
| 220 |
+
|
| 221 |
+
def run_prompt(prompt, history):
|
| 222 |
+
"""
|
| 223 |
+
Initialize the inference client, as well as the sql agent.
|
| 224 |
+
Args:
|
| 225 |
+
prompt (String): The user's query to be fed to the agent.
|
| 226 |
+
history (Any):
|
| 227 |
+
Returns:
|
| 228 |
+
sql_agent (Agent): The agent that will be used for inference.
|
| 229 |
+
"""
|
| 230 |
+
table_descrip = table_description()
|
| 231 |
+
table_status = table_check()
|
| 232 |
+
if "NoSuchTableError" in table_status:
|
| 233 |
+
return table_status + " Check the table has the expected name and it is consistent."
|
| 234 |
+
return agent.run(prompt + f". Always wrap the result in relevant context and enforce the results object returning rows. Table description is as follows:{table_descrip}")
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def vote(data: gr.LikeData):
|
| 238 |
+
"""
|
| 239 |
+
Provide feedback to agent's response.
|
| 240 |
+
Args:
|
| 241 |
+
data (LikeData): carries information about the .like() event.
|
| 242 |
+
Returns:
|
| 243 |
+
None
|
| 244 |
+
"""
|
| 245 |
+
if data.liked:
|
| 246 |
+
print("You upvoted this response: " + data.value["value"])
|
| 247 |
+
else:
|
| 248 |
+
print("You downvoted this response: " + data.value["value"])
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def process_file(fileobj):
|
| 252 |
+
"""
|
| 253 |
+
Save file to temporary folder.
|
| 254 |
+
Args:
|
| 255 |
+
fileobj (Any): The uploaded file.
|
| 256 |
+
Returns:
|
| 257 |
+
None (calls csv_2_dict)
|
| 258 |
+
"""
|
| 259 |
+
csv_path = PATHS.TEMP_PATH + os.path.basename(fileobj)
|
| 260 |
+
# copy file to path
|
| 261 |
+
shutil.copyfile(fileobj.name, csv_path)
|
| 262 |
+
return csv_2_dict(csv_path)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def csv_2_dict(path):
|
| 266 |
+
"""
|
| 267 |
+
Reads csv as a dataframe which is converted to a dictionary that is written to a pkl file in the temporary folder.
|
| 268 |
+
Args:
|
| 269 |
+
path (Any): The temporary file path.
|
| 270 |
+
Returns:
|
| 271 |
+
None
|
| 272 |
+
"""
|
| 273 |
+
# read csv as dataframe then drop empties
|
| 274 |
+
df = pd.read_csv(path)
|
| 275 |
+
df_cleaned = df.dropna()
|
| 276 |
+
# convert dataframe to a dictionary and save as pickle file
|
| 277 |
+
table_data = df_cleaned.to_dict(orient='list')
|
| 278 |
+
with open(PATHS.PKL_FILE_PATH, "wb") as f:
|
| 279 |
+
pickle.dump(table_data, f)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def change_insert_mode(choice):
|
| 283 |
+
"""
|
| 284 |
+
Drops table if user elects to upload a new table passes if no table to drop or user chooses to upload to existing table.
|
| 285 |
+
Args:
|
| 286 |
+
choice (Any): The name of the radio button the user has selected.
|
| 287 |
+
Returns:
|
| 288 |
+
None
|
| 289 |
+
"""
|
| 290 |
+
table_status = table_check()
|
| 291 |
+
if choice == "Upload New" and not "NoSuchTableError" in table_status:
|
| 292 |
+
sql_engine(f"DROP TABLE {PATHS.TABLE_NAME};")
|
| 293 |
+
else:
|
| 294 |
+
pass
|
| 295 |
+
|
| 296 |
+
with gr.Blocks() as demo:
|
| 297 |
+
with gr.Tab("Table Setup"):
|
| 298 |
+
insert_mode = gr.Radio(["Upload New", "Upload to Existing"], label="Insertion Mode",
|
| 299 |
+
info="Warning selecting Upload New will immediately drop existing table, leaving unseleted will add to existing table.")
|
| 300 |
+
insert_mode.input(fn=change_insert_mode, inputs=insert_mode, outputs=None)
|
| 301 |
+
gr.Markdown("Next upload the csv:")
|
| 302 |
+
gr.Interface(
|
| 303 |
+
fn=process_file,
|
| 304 |
+
inputs=[
|
| 305 |
+
"file",
|
| 306 |
+
],
|
| 307 |
+
outputs=None,
|
| 308 |
+
flagging_mode="never"
|
| 309 |
+
)
|
| 310 |
+
column_type = gr.Textbox(label="Enter column data types (String, Integer, Float) as a comma seperated list:")
|
| 311 |
+
column_type_message = gr.Textbox(label="Feedback:")
|
| 312 |
+
col_type_button = gr.Button("Submit")
|
| 313 |
+
col_type_button.click(update_table, inputs=column_type, outputs=[column_type_message, ])
|
| 314 |
+
with gr.Tab("Text2SQL Agent"):
|
| 315 |
+
chatbot = gr.Chatbot(type="messages", placeholder=f"<strong>Ask agent to perform a query.</strong>")
|
| 316 |
+
chatbot.like(vote, None, None)
|
| 317 |
+
gr.ChatInterface(fn=run_prompt, type="messages", chatbot=chatbot)
|
| 318 |
+
|
| 319 |
+
if __name__ == "__main__":
|
| 320 |
+
# initialize agent once
|
| 321 |
+
agent = agent_setup()
|
| 322 |
+
|
| 323 |
+
demo.launch(debug=True)
|