File size: 15,265 Bytes
865160b
 
77dfcc0
99a1538
 
 
 
865160b
 
 
3d584e3
 
 
 
99a1538
d95504a
 
 
 
 
77dfcc0
99a1538
77dfcc0
d95504a
3d584e3
a17e48f
967e5a0
a17e48f
9aab6a2
967e5a0
b48561b
 
 
 
d95504a
b48561b
 
99a1538
03511a5
3a7b6f0
 
 
03511a5
 
3a7b6f0
77dfcc0
b87c428
99a1538
b87c428
 
 
77dfcc0
 
 
99a1538
c029d89
d95504a
393770d
99a1538
967e5a0
 
77dfcc0
b48561b
b87c428
03511a5
3d584e3
967e5a0
3d584e3
918e81f
967e5a0
03511a5
967e5a0
 
77dfcc0
3d584e3
967e5a0
03511a5
967e5a0
3a7b6f0
9261560
3d584e3
b87c428
2b15ba2
 
03511a5
967e5a0
03511a5
77dfcc0
b87c428
 
3d584e3
 
3fde113
 
3a7b6f0
a17e48f
865160b
3a7b6f0
3fde113
 
967e5a0
 
 
cf19404
3d584e3
 
 
865160b
 
 
 
 
 
 
 
 
 
 
 
 
 
03511a5
d95504a
 
3d584e3
ed4a174
03511a5
865160b
99a1538
d95504a
865160b
b87c428
3a7b6f0
3d584e3
9aab6a2
 
 
3a7b6f0
9aab6a2
76e8490
77dfcc0
d95504a
 
99a1538
77dfcc0
 
99a1538
77dfcc0
 
 
 
 
 
 
 
 
 
 
967e5a0
99a1538
 
967e5a0
3d584e3
99a1538
 
 
 
77dfcc0
76b4e6a
de3ab4f
77dfcc0
865160b
d95504a
 
 
b48561b
d13e610
77dfcc0
d95504a
 
 
 
8e0827a
cfa2249
b48561b
 
eb3e5ca
6096cb1
3d584e3
967e5a0
77dfcc0
967e5a0
3d584e3
 
 
3fde113
9aab6a2
99a1538
77dfcc0
d95504a
99a1538
d95504a
 
 
 
 
 
 
 
9aab6a2
865160b
03511a5
3d584e3
865160b
3a7b6f0
967e5a0
865160b
76b4e6a
9aab6a2
 
99a1538
 
 
 
 
 
76b4e6a
99a1538
3d584e3
99a1538
 
 
77dfcc0
 
99a1538
77dfcc0
3d584e3
 
 
 
 
 
f41a82a
967e5a0
 
 
bf69658
a17e48f
bc333a8
5101b3b
 
 
 
 
b87c428
5101b3b
 
53c7bc2
 
 
 
 
 
 
 
a17e48f
 
bf69658
5101b3b
967e5a0
76b4e6a
967e5a0
f043359
76b4e6a
 
99a1538
d95504a
 
f043359
 
 
d95504a
 
f043359
99a1538
f043359
 
 
 
 
76b4e6a
99a1538
f043359
76b4e6a
f043359
 
 
 
 
76b4e6a
 
f043359
 
 
 
 
 
 
 
 
99a1538
f043359
76b4e6a
f043359
 
76b4e6a
f043359
 
99a1538
f043359
 
 
99a1538
f043359
76b4e6a
d95504a
f043359
 
 
a17e48f
 
 
3d584e3
f41a82a
 
 
03511a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
"""
=========================================================
 app.py — Green Greta (Gradio + TF/Keras 3 + LangChain 0.3)
  - Chat tab: Blocks + Chatbot(height=...) ✅
  - LLM: meta-llama/Meta-Llama-3.1-8B-Instruct ✅
  - RAG: e5-base-v2 + (BM25+Vector) con fallback + Multi-Query + reranker ✅
  - Responde en el idioma elegido (sin pasar claves extra) ✅
=========================================================
"""

import os
import json
import shutil

# --- Env / telemetry (antes de imports que lo usen) ---
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
os.environ.setdefault("ANONYMIZED_TELEMETRY", "false")
os.environ.setdefault("CHROMA_TELEMETRY_ENABLED", "FALSE")
os.environ.setdefault("USER_AGENT", "green-greta/1.0 (+contact-or-repo)")
# Opcional: resultados CPU más estables de TF
# os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")

import gradio as gr
import tensorflow as tf
from tensorflow import keras
from PIL import Image

import tenacity
try:
    from fake_useragent import UserAgent
    user_agent = UserAgent().random
except Exception:
    user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36"
header_template = {"User-Agent": user_agent}

# --- LangChain / RAG ---
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma

# Embeddings
try:
    from langchain_huggingface import HuggingFaceEmbeddings
except ImportError:
    from langchain_community.embeddings import HuggingFaceEmbeddings

# Retrieval utilities
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.retrievers import BM25Retriever
from langchain_community.cross_encoders import HuggingFaceCrossEncoder

# HF Hub
from huggingface_hub import snapshot_download

# LLM via HF Inference
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint

# Theming + URL list
import theme
from url_list import URLS
theme = theme.Theme()

# =========================================================
# 1) IMAGE CLASSIFICATION — Keras 3-safe SavedModel loading
# =========================================================
MODEL_REPO = "rocioadlc/efficientnetB0_trash"
MODEL_SERVING_SIGNATURE = "serving_default"

model_dir = snapshot_download(MODEL_REPO)
image_model = keras.layers.TFSMLayer(model_dir, call_endpoint=MODEL_SERVING_SIGNATURE)

class_labels = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]

def predict_image(input_image: Image.Image):
    img = input_image.convert("RGB").resize((224, 224))
    x = tf.keras.preprocessing.image.img_to_array(img)
    x = tf.keras.applications.efficientnet.preprocess_input(x)
    x = tf.expand_dims(x, 0)

    outputs = image_model(x)
    preds = outputs[next(iter(outputs))] if isinstance(outputs, dict) and outputs else outputs
    arr = preds.numpy() if hasattr(preds, "numpy") else preds
    probs = arr[0].tolist()
    return {label: float(probs[i]) for i, label in enumerate(class_labels)}

image_gradio_app = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(label="Image", sources=["upload", "webcam"], type="pil"),
    outputs=[gr.Label(label="Result")],
    title="<span style='color: rgb(243, 239, 224);'>Green Greta</span>",
    theme=theme,
)

# ============================================
# 2) KNOWLEDGE LOADING (RAG: loader + splitter)
# ============================================

@tenacity.retry(wait=tenacity.wait_fixed(3), stop=tenacity.stop_after_attempt(3), reraise=True)
def load_url(url: str):
    loader = WebBaseLoader(web_paths=[url], header_template=header_template)
    return loader.load()

def safe_load_all_urls(urls):
    all_docs = []
    for link in urls:
        try:
            docs = load_url(link)
            all_docs.extend(docs)
        except Exception as e:
            print(f"Skipping URL due to error: {link}\nError: {e}\n")
    return all_docs

all_loaded_docs = safe_load_all_urls(URLS)

base_splitter = RecursiveCharacterTextSplitter(
    chunk_size=900,
    chunk_overlap=100,
    length_function=len,
)
docs = base_splitter.split_documents(all_loaded_docs)

# Embeddings
embeddings = HuggingFaceEmbeddings(model_name="intfloat/e5-base-v2")

# Vector store
persist_directory = "docs/chroma/"
shutil.rmtree(persist_directory, ignore_errors=True)
vectordb = Chroma.from_documents(
    documents=docs,
    embedding=embeddings,
    persist_directory=persist_directory,
)

# Vector retriever
vec_retriever = vectordb.as_retriever(search_kwargs={"k": 8}, search_type="mmr")

# BM25 + Ensemble con fallback si falta rank-bm25
use_bm25 = True
try:
    bm25 = BM25Retriever.from_documents(docs)  # requiere rank-bm25
    bm25.k = 8
except Exception as e:
    print(f"[RAG] BM25 unavailable ({e}). Falling back to vector-only retriever.")
    use_bm25 = False
    bm25 = None

if use_bm25:
    base_retriever = EnsembleRetriever(retrievers=[bm25, vec_retriever], weights=[0.4, 0.6])
else:
    base_retriever = vec_retriever

# ======================================
# 3) PROMPT (sin variables extra: solo {context} y {question})
#    Instruimos al modelo a obedecer un prefijo en la propia pregunta.
# ======================================
SYSTEM_TEMPLATE = (
    "You are Greta, a recycling & sustainability assistant. "
    "Follow any explicit language directive at the start of the question, e.g., "
    "‘Answer ONLY in Spanish.’ If there is no directive, detect the user's language and answer accordingly. "
    "Be direct and practical. If the snippets are insufficient, say so and suggest actionable next steps.\n\n"
    "{context}\n\n"
    "Question: {question}"
)
qa_prompt = ChatPromptTemplate.from_template(SYSTEM_TEMPLATE)

# ===========================================
# 4) LLM — Hugging Face Inference (Llama 3.1 8B)
# ===========================================
endpoint = HuggingFaceEndpoint(
    repo_id="meta-llama/Meta-Llama-3.1-8B-Instruct",
    task="text-generation",
    max_new_tokens=900,
    temperature=0.2,
    top_k=40,
    repetition_penalty=1.05,
    return_full_text=False,
    huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
    timeout=120,
    model_kwargs={},
)
llm = ChatHuggingFace(llm=endpoint)

# ===========================================
# 5) Chain (memory + Multi-Query + reranker + compression)
# ===========================================
memory = ConversationBufferMemory(
    memory_key="chat_history",
    return_messages=True,
)

# Multi-Query (paráfrasis de la consulta)
mqr = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=llm, include_original=True)

# Reranker (cross-encoder base)
cross_encoder = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
reranker = CrossEncoderReranker(model=cross_encoder, top_n=4)

compression_retriever = ContextualCompressionRetriever(
    base_retriever=mqr,
    base_compressor=reranker,
)

qa_chain = ConversationalRetrievalChain.from_llm(
    llm=llm,
    retriever=compression_retriever,
    memory=memory,
    verbose=True,
    combine_docs_chain_kwargs={"prompt": qa_prompt},
    get_chat_history=lambda h: h,
    rephrase_question=False,
    return_source_documents=False,
)

# ===== Helper: construir prefijo de idioma en la propia pregunta =====
def _lang_directive(lang: str) -> str:
    if not lang or lang.strip().lower() == "auto":
        return "Detect the user's language and answer in that language."
    return f"Answer ONLY in {lang}."

def chat_interface(question: str, history, target_language: str = "Auto"):
    """Devuelve respuesta limpia en el idioma solicitado, SIN pasar claves extra al chain."""
    try:
        directive = _lang_directive(target_language)
        combined_q = f"{directive}\n\n{question}"
        result = qa_chain.invoke({"question": combined_q})
        answer = result.get("answer", "")
        if not answer:
            return "Lo siento, no pude generar una respuesta útil con la información disponible."
        return answer
    except Exception as e:
        return (
            "Lo siento, tuve un problema procesando tu pregunta. "
            "Intenta de nuevo en un momento o formula la consulta de otra manera.\n\n"
            f"Detalle técnico: {e}"
        )

# ============================
# 6) Banner / Welcome content
# ============================
banner_tab_content = """
<div style="background-color: #d3e3c3; text-align: center; padding: 20px; display: flex; flex-direction: column; align-items: center;">
    <img src="https://huggingface.co/spaces/ALVHB95/TFM_DataScience_APP/resolve/main/front_4.jpg" alt="Banner Image" style="width: 50%; max-width: 500px; margin: 0 auto;">
    <h1 style="font-size: 24px; color: #4e6339; margin-top: 20px;">¡Bienvenido a nuestro clasificador de imágenes y chatbot para un reciclaje más inteligente!♻️</h1>
    <p style="font-size: 16px; color: #4e6339; text-align: justify;">¿Alguna vez te has preguntado si puedes reciclar un objeto en particular? ¿O te has sentido abrumado por la cantidad de residuos que generas y no sabes cómo manejarlos de manera más sostenible? ¡Estás en el lugar correcto!</p>
    <p style="font-size: 16px; color: #4e6339; text-align: justify;">Nuestra plataforma combina la potencia de la inteligencia artificial con la comodidad de un chatbot para brindarte respuestas rápidas y precisas sobre qué objetos son reciclables y cómo hacerlo de la manera más eficiente.</p>
    <p style="font-size: 16px; text-align:center;"><strong><span style="color: #4e6339;">¿Cómo usarlo?</span></strong></p>
    <ul style="list-style-type: disc; text-align: justify; margin-top: 20px; padding-left: 20px;">
        <li style="font-size: 16px; color: #4e6339;"><strong><span style="color: #4e6339;">Green Greta Image Classification:</span></strong> Ve a la pestaña Greta Image Classification y simplemente carga una foto del objeto que quieras reciclar, y nuestro modelo identificará de qué se trata🕵️‍♂️ para que puedas desecharlo adecuadamente.</li>
        <li style="font-size: 16px; color: #4e6339;"><strong><span style="color: #4e6339;">Green Greta Chat:</span></strong> ¿Tienes preguntas sobre reciclaje, materiales específicos o prácticas sostenibles? ¡Pregunta a nuestro chatbot en la pestaña Green Greta Chat!📝 Está aquí para responder todas tus preguntas y ayudarte a tomar decisiones más informadas sobre tu reciclaje.</li>
    </ul>
    <h1 style="font-size: 24px; color: #4e6339; margin-top: 20px;">Welcome to our image classifier and chatbot for smarter recycling!♻️</h1>
    <p style="font-size: 16px; color: #4e6339; text-align: justify;">Have you ever wondered if you can recycle a particular object? Or felt overwhelmed by the amount of waste you generate and don't know how to handle it more sustainably? You're in the right place!</p>
    <p style="font-size: 16px; color: #4e6339; text-align: justify;">Our platform combines the power of artificial intelligence with the convenience of a chatbot to provide you with quick and accurate answers about which objects are recyclable and how to do it most efficiently.</p>
    <p style="font-size: 16px; text-align:center;"><strong><span style="color: #4e6339;">How to use it?</span></strong>
    <ul style="list-style-type: disc; text-align: justify; margin-top: 20px; padding-left: 20px;">
        <li style="font-size: 16px; color: #4e6339;"><strong><span style="color: #4e6339;">Green Greta Image Classification:</span></strong> Go to the Greta Image Classification tab and simply upload a photo of the object you want to recycle, and our model will identify what it is🕵️‍♂️ so you can dispose of it properly.</li>
        <li style="font-size: 16px; color: #4e6339;"><strong><span style="color: #4e6339;">Green Greta Chat:</span></strong> Have questions about recycling, specific materials, or sustainable practices? Ask our chatbot in the Green Greta Chat tab!📝 It's here to answer all your questions and help you make more informed decisions about your recycling.</li>
    </ul>
</div>
"""
banner_tab = gr.Markdown(banner_tab_content)

# ============================
# 7) Chat tab (Blocks + Chatbot with height + language selector)
# ============================

SUPPORTED_LANGS = ["Auto", "English", "German", "French", "Italian", "Portuguese", "Hindi", "Spanish", "Thai"]

# CSS: ampliar área de chat y ancho general
custom_css = """
.gradio-container { max-width: 1200px !important; }
#greta-chat { height: 700px !important; }
#greta-chat .gr-chatbot { height: 700px !important; min-height: 700px !important; }
#greta-chat .overflow-y-auto { height: 660px !important; max-height: 660px !important; }
"""

def _user_submit(user_msg, history):
    """Añade turno del usuario; el bot responde después."""
    if not user_msg:
        return "", history
    history = history + [[user_msg, None]]
    return "", history

def _bot_respond(history, target_language):
    """Genera la respuesta del bot en el idioma solicitado."""
    user_msg = history[-1][0]
    answer = chat_interface(user_msg, history[:-1], target_language=target_language or "Auto")
    history[-1][1] = answer
    return history

with gr.Blocks(theme=theme, css=custom_css) as chatbot_gradio_app:
    gr.Markdown("<h1 style='text-align:center;color:#f3efe0;'>Green Greta</h1>")
    with gr.Row():
        lang_sel = gr.Dropdown(SUPPORTED_LANGS, value="Auto", label="Answer language")
    chat = gr.Chatbot(label="Chatbot", height=700, elem_id="greta-chat", show_copy_button=True)
    with gr.Row():
        msg = gr.Textbox(placeholder="Type a message…", scale=9)
        send = gr.Button("Submit", scale=1)
    with gr.Row():
        retry = gr.Button("↻ Retry")
        undo = gr.Button("↩︎ Undo")
        clear = gr.Button("🗑 Clear")

    # Envío por botón o Enter (pasamos el idioma al responder)
    send.click(_user_submit, [msg, chat], [msg, chat], queue=False).then(
        _bot_respond, [chat, lang_sel], [chat]
    )
    msg.submit(_user_submit, [msg, chat], [msg, chat], queue=False).then(
        _bot_respond, [chat, lang_sel], [chat]
    )

    # Utilidades
    clear.click(lambda: [], None, chat, queue=False)
    undo.click(lambda h: h[:-1] if h else h, chat, chat, queue=False)
    retry.click(
        lambda h: (h[:-1] + [[h[-1][0], None]]) if h else h,  # reintenta la última pregunta
        chat, chat, queue=False
    ).then(_bot_respond, [chat, lang_sel], [chat])

# ============================
# 8) Tabs + launch
# ============================
app = gr.TabbedInterface(
    [banner_tab, image_gradio_app, chatbot_gradio_app],
    tab_names=["Welcome to Green Greta", "Green Greta Image Classification", "Green Greta Chat"],
    theme=theme,
)

app.queue()
app.launch()