Spaces:
Running
Running
new model
Browse files
app.py
CHANGED
|
@@ -1,11 +1,10 @@
|
|
| 1 |
"""
|
| 2 |
=========================================================
|
| 3 |
app.py — Green Greta (Gradio + TF/Keras 3 + LangChain 0.3)
|
| 4 |
-
- Chat tab
|
| 5 |
-
- LLM: meta-llama/Meta-Llama-3.1-8B-Instruct
|
| 6 |
-
- RAG: e5-base-v2 + (BM25+Vector)
|
| 7 |
-
-
|
| 8 |
-
- No JSON output leakage ✅
|
| 9 |
=========================================================
|
| 10 |
"""
|
| 11 |
|
|
@@ -13,14 +12,14 @@ import os
|
|
| 13 |
import json
|
| 14 |
import shutil
|
| 15 |
|
| 16 |
-
# --- Env / telemetry (
|
| 17 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 18 |
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
|
| 19 |
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
| 20 |
os.environ.setdefault("ANONYMIZED_TELEMETRY", "false")
|
| 21 |
os.environ.setdefault("CHROMA_TELEMETRY_ENABLED", "FALSE")
|
| 22 |
os.environ.setdefault("USER_AGENT", "green-greta/1.0 (+contact-or-repo)")
|
| 23 |
-
#
|
| 24 |
# os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")
|
| 25 |
|
| 26 |
import gradio as gr
|
|
@@ -36,7 +35,7 @@ except Exception:
|
|
| 36 |
user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36"
|
| 37 |
header_template = {"User-Agent": user_agent}
|
| 38 |
|
| 39 |
-
# --- LangChain
|
| 40 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 41 |
from langchain_core.prompts import ChatPromptTemplate
|
| 42 |
from langchain.chains import ConversationalRetrievalChain
|
|
@@ -46,19 +45,18 @@ from langchain_community.vectorstores import Chroma
|
|
| 46 |
|
| 47 |
# Embeddings
|
| 48 |
try:
|
| 49 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
| 50 |
except ImportError:
|
| 51 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 52 |
|
| 53 |
# Retrieval utilities
|
| 54 |
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
|
| 55 |
-
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 56 |
from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 57 |
-
|
| 58 |
from langchain_community.retrievers import BM25Retriever
|
| 59 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 60 |
|
| 61 |
-
# HF Hub
|
| 62 |
from huggingface_hub import snapshot_download
|
| 63 |
|
| 64 |
# LLM via HF Inference
|
|
@@ -128,7 +126,7 @@ base_splitter = RecursiveCharacterTextSplitter(
|
|
| 128 |
)
|
| 129 |
docs = base_splitter.split_documents(all_loaded_docs)
|
| 130 |
|
| 131 |
-
# Embeddings
|
| 132 |
embeddings = HuggingFaceEmbeddings(model_name="intfloat/e5-base-v2")
|
| 133 |
|
| 134 |
# Vector store
|
|
@@ -143,10 +141,10 @@ vectordb = Chroma.from_documents(
|
|
| 143 |
# Vector retriever
|
| 144 |
vec_retriever = vectordb.as_retriever(search_kwargs={"k": 8}, search_type="mmr")
|
| 145 |
|
| 146 |
-
# BM25 + Ensemble
|
| 147 |
use_bm25 = True
|
| 148 |
try:
|
| 149 |
-
bm25 = BM25Retriever.from_documents(docs) #
|
| 150 |
bm25.k = 8
|
| 151 |
except Exception as e:
|
| 152 |
print(f"[RAG] BM25 unavailable ({e}). Falling back to vector-only retriever.")
|
|
@@ -159,14 +157,14 @@ else:
|
|
| 159 |
base_retriever = vec_retriever
|
| 160 |
|
| 161 |
# ======================================
|
| 162 |
-
# 3) PROMPT (
|
|
|
|
| 163 |
# ======================================
|
| 164 |
SYSTEM_TEMPLATE = (
|
| 165 |
-
"You are Greta, a
|
| 166 |
-
"
|
| 167 |
-
"
|
| 168 |
-
"
|
| 169 |
-
"- Do not reveal or mention 'snippets' or internal tools.\n\n"
|
| 170 |
"{context}\n\n"
|
| 171 |
"Question: {question}"
|
| 172 |
)
|
|
@@ -197,10 +195,10 @@ memory = ConversationBufferMemory(
|
|
| 197 |
return_messages=True,
|
| 198 |
)
|
| 199 |
|
| 200 |
-
# Multi-Query
|
| 201 |
mqr = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=llm, include_original=True)
|
| 202 |
|
| 203 |
-
#
|
| 204 |
cross_encoder = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
| 205 |
reranker = CrossEncoderReranker(model=cross_encoder, top_n=4)
|
| 206 |
|
|
@@ -220,13 +218,21 @@ qa_chain = ConversationalRetrievalChain.from_llm(
|
|
| 220 |
return_source_documents=False,
|
| 221 |
)
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
def chat_interface(question: str, history, target_language: str = "Auto"):
|
| 224 |
-
"""
|
| 225 |
try:
|
| 226 |
-
|
|
|
|
|
|
|
| 227 |
answer = result.get("answer", "")
|
| 228 |
if not answer:
|
| 229 |
-
return "
|
| 230 |
return answer
|
| 231 |
except Exception as e:
|
| 232 |
return (
|
|
@@ -267,7 +273,7 @@ banner_tab = gr.Markdown(banner_tab_content)
|
|
| 267 |
|
| 268 |
SUPPORTED_LANGS = ["Auto", "English", "German", "French", "Italian", "Portuguese", "Hindi", "Spanish", "Thai"]
|
| 269 |
|
| 270 |
-
# CSS:
|
| 271 |
custom_css = """
|
| 272 |
.gradio-container { max-width: 1200px !important; }
|
| 273 |
#greta-chat { height: 700px !important; }
|
|
@@ -276,16 +282,15 @@ custom_css = """
|
|
| 276 |
"""
|
| 277 |
|
| 278 |
def _user_submit(user_msg, history):
|
| 279 |
-
"""
|
| 280 |
if not user_msg:
|
| 281 |
return "", history
|
| 282 |
history = history + [[user_msg, None]]
|
| 283 |
return "", history
|
| 284 |
|
| 285 |
def _bot_respond(history, target_language):
|
| 286 |
-
"""
|
| 287 |
user_msg = history[-1][0]
|
| 288 |
-
# Pass previous history to our RAG function (excluding the current empty bot turn)
|
| 289 |
answer = chat_interface(user_msg, history[:-1], target_language=target_language or "Auto")
|
| 290 |
history[-1][1] = answer
|
| 291 |
return history
|
|
@@ -303,7 +308,7 @@ with gr.Blocks(theme=theme, css=custom_css) as chatbot_gradio_app:
|
|
| 303 |
undo = gr.Button("↩︎ Undo")
|
| 304 |
clear = gr.Button("🗑 Clear")
|
| 305 |
|
| 306 |
-
#
|
| 307 |
send.click(_user_submit, [msg, chat], [msg, chat], queue=False).then(
|
| 308 |
_bot_respond, [chat, lang_sel], [chat]
|
| 309 |
)
|
|
@@ -311,11 +316,11 @@ with gr.Blocks(theme=theme, css=custom_css) as chatbot_gradio_app:
|
|
| 311 |
_bot_respond, [chat, lang_sel], [chat]
|
| 312 |
)
|
| 313 |
|
| 314 |
-
#
|
| 315 |
clear.click(lambda: [], None, chat, queue=False)
|
| 316 |
undo.click(lambda h: h[:-1] if h else h, chat, chat, queue=False)
|
| 317 |
retry.click(
|
| 318 |
-
lambda h: (h[:-1] + [[h[-1][0], None]]) if h else h, #
|
| 319 |
chat, chat, queue=False
|
| 320 |
).then(_bot_respond, [chat, lang_sel], [chat])
|
| 321 |
|
|
|
|
| 1 |
"""
|
| 2 |
=========================================================
|
| 3 |
app.py — Green Greta (Gradio + TF/Keras 3 + LangChain 0.3)
|
| 4 |
+
- Chat tab: Blocks + Chatbot(height=...) ✅
|
| 5 |
+
- LLM: meta-llama/Meta-Llama-3.1-8B-Instruct ✅
|
| 6 |
+
- RAG: e5-base-v2 + (BM25+Vector) con fallback + Multi-Query + reranker ✅
|
| 7 |
+
- Responde en el idioma elegido (sin pasar claves extra) ✅
|
|
|
|
| 8 |
=========================================================
|
| 9 |
"""
|
| 10 |
|
|
|
|
| 12 |
import json
|
| 13 |
import shutil
|
| 14 |
|
| 15 |
+
# --- Env / telemetry (antes de imports que lo usen) ---
|
| 16 |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
| 17 |
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
|
| 18 |
os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
| 19 |
os.environ.setdefault("ANONYMIZED_TELEMETRY", "false")
|
| 20 |
os.environ.setdefault("CHROMA_TELEMETRY_ENABLED", "FALSE")
|
| 21 |
os.environ.setdefault("USER_AGENT", "green-greta/1.0 (+contact-or-repo)")
|
| 22 |
+
# Opcional: resultados CPU más estables de TF
|
| 23 |
# os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")
|
| 24 |
|
| 25 |
import gradio as gr
|
|
|
|
| 35 |
user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/124.0.0.0 Safari/537.36"
|
| 36 |
header_template = {"User-Agent": user_agent}
|
| 37 |
|
| 38 |
+
# --- LangChain / RAG ---
|
| 39 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 40 |
from langchain_core.prompts import ChatPromptTemplate
|
| 41 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
| 45 |
|
| 46 |
# Embeddings
|
| 47 |
try:
|
| 48 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 49 |
except ImportError:
|
| 50 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 51 |
|
| 52 |
# Retrieval utilities
|
| 53 |
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
|
|
|
|
| 54 |
from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 55 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 56 |
from langchain_community.retrievers import BM25Retriever
|
| 57 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
| 58 |
|
| 59 |
+
# HF Hub
|
| 60 |
from huggingface_hub import snapshot_download
|
| 61 |
|
| 62 |
# LLM via HF Inference
|
|
|
|
| 126 |
)
|
| 127 |
docs = base_splitter.split_documents(all_loaded_docs)
|
| 128 |
|
| 129 |
+
# Embeddings
|
| 130 |
embeddings = HuggingFaceEmbeddings(model_name="intfloat/e5-base-v2")
|
| 131 |
|
| 132 |
# Vector store
|
|
|
|
| 141 |
# Vector retriever
|
| 142 |
vec_retriever = vectordb.as_retriever(search_kwargs={"k": 8}, search_type="mmr")
|
| 143 |
|
| 144 |
+
# BM25 + Ensemble con fallback si falta rank-bm25
|
| 145 |
use_bm25 = True
|
| 146 |
try:
|
| 147 |
+
bm25 = BM25Retriever.from_documents(docs) # requiere rank-bm25
|
| 148 |
bm25.k = 8
|
| 149 |
except Exception as e:
|
| 150 |
print(f"[RAG] BM25 unavailable ({e}). Falling back to vector-only retriever.")
|
|
|
|
| 157 |
base_retriever = vec_retriever
|
| 158 |
|
| 159 |
# ======================================
|
| 160 |
+
# 3) PROMPT (sin variables extra: solo {context} y {question})
|
| 161 |
+
# Instruimos al modelo a obedecer un prefijo en la propia pregunta.
|
| 162 |
# ======================================
|
| 163 |
SYSTEM_TEMPLATE = (
|
| 164 |
+
"You are Greta, a recycling & sustainability assistant. "
|
| 165 |
+
"Follow any explicit language directive at the start of the question, e.g., "
|
| 166 |
+
"‘Answer ONLY in Spanish.’ If there is no directive, detect the user's language and answer accordingly. "
|
| 167 |
+
"Be direct and practical. If the snippets are insufficient, say so and suggest actionable next steps.\n\n"
|
|
|
|
| 168 |
"{context}\n\n"
|
| 169 |
"Question: {question}"
|
| 170 |
)
|
|
|
|
| 195 |
return_messages=True,
|
| 196 |
)
|
| 197 |
|
| 198 |
+
# Multi-Query (paráfrasis de la consulta)
|
| 199 |
mqr = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=llm, include_original=True)
|
| 200 |
|
| 201 |
+
# Reranker (cross-encoder base)
|
| 202 |
cross_encoder = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
| 203 |
reranker = CrossEncoderReranker(model=cross_encoder, top_n=4)
|
| 204 |
|
|
|
|
| 218 |
return_source_documents=False,
|
| 219 |
)
|
| 220 |
|
| 221 |
+
# ===== Helper: construir prefijo de idioma en la propia pregunta =====
|
| 222 |
+
def _lang_directive(lang: str) -> str:
|
| 223 |
+
if not lang or lang.strip().lower() == "auto":
|
| 224 |
+
return "Detect the user's language and answer in that language."
|
| 225 |
+
return f"Answer ONLY in {lang}."
|
| 226 |
+
|
| 227 |
def chat_interface(question: str, history, target_language: str = "Auto"):
|
| 228 |
+
"""Devuelve respuesta limpia en el idioma solicitado, SIN pasar claves extra al chain."""
|
| 229 |
try:
|
| 230 |
+
directive = _lang_directive(target_language)
|
| 231 |
+
combined_q = f"{directive}\n\n{question}"
|
| 232 |
+
result = qa_chain.invoke({"question": combined_q})
|
| 233 |
answer = result.get("answer", "")
|
| 234 |
if not answer:
|
| 235 |
+
return "Lo siento, no pude generar una respuesta útil con la información disponible."
|
| 236 |
return answer
|
| 237 |
except Exception as e:
|
| 238 |
return (
|
|
|
|
| 273 |
|
| 274 |
SUPPORTED_LANGS = ["Auto", "English", "German", "French", "Italian", "Portuguese", "Hindi", "Spanish", "Thai"]
|
| 275 |
|
| 276 |
+
# CSS: ampliar área de chat y ancho general
|
| 277 |
custom_css = """
|
| 278 |
.gradio-container { max-width: 1200px !important; }
|
| 279 |
#greta-chat { height: 700px !important; }
|
|
|
|
| 282 |
"""
|
| 283 |
|
| 284 |
def _user_submit(user_msg, history):
|
| 285 |
+
"""Añade turno del usuario; el bot responde después."""
|
| 286 |
if not user_msg:
|
| 287 |
return "", history
|
| 288 |
history = history + [[user_msg, None]]
|
| 289 |
return "", history
|
| 290 |
|
| 291 |
def _bot_respond(history, target_language):
|
| 292 |
+
"""Genera la respuesta del bot en el idioma solicitado."""
|
| 293 |
user_msg = history[-1][0]
|
|
|
|
| 294 |
answer = chat_interface(user_msg, history[:-1], target_language=target_language or "Auto")
|
| 295 |
history[-1][1] = answer
|
| 296 |
return history
|
|
|
|
| 308 |
undo = gr.Button("↩︎ Undo")
|
| 309 |
clear = gr.Button("🗑 Clear")
|
| 310 |
|
| 311 |
+
# Envío por botón o Enter (pasamos el idioma al responder)
|
| 312 |
send.click(_user_submit, [msg, chat], [msg, chat], queue=False).then(
|
| 313 |
_bot_respond, [chat, lang_sel], [chat]
|
| 314 |
)
|
|
|
|
| 316 |
_bot_respond, [chat, lang_sel], [chat]
|
| 317 |
)
|
| 318 |
|
| 319 |
+
# Utilidades
|
| 320 |
clear.click(lambda: [], None, chat, queue=False)
|
| 321 |
undo.click(lambda h: h[:-1] if h else h, chat, chat, queue=False)
|
| 322 |
retry.click(
|
| 323 |
+
lambda h: (h[:-1] + [[h[-1][0], None]]) if h else h, # reintenta la última pregunta
|
| 324 |
chat, chat, queue=False
|
| 325 |
).then(_bot_respond, [chat, lang_sel], [chat])
|
| 326 |
|