Spaces:
Running
Running
new model
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@
|
|
| 4 |
- Chat tab uses Blocks + Chatbot(height=...) ✅
|
| 5 |
- LLM: meta-llama/Meta-Llama-3.1-8B-Instruct ✅
|
| 6 |
- RAG: e5-base-v2 + (BM25+Vector) with safe fallback + Multi-Query + reranker ✅
|
|
|
|
| 7 |
- No JSON output leakage ✅
|
| 8 |
=========================================================
|
| 9 |
"""
|
|
@@ -19,7 +20,7 @@ os.environ.setdefault("GRADIO_ANALYTICS_ENABLED", "False")
|
|
| 19 |
os.environ.setdefault("ANONYMIZED_TELEMETRY", "false")
|
| 20 |
os.environ.setdefault("CHROMA_TELEMETRY_ENABLED", "FALSE")
|
| 21 |
os.environ.setdefault("USER_AGENT", "green-greta/1.0 (+contact-or-repo)")
|
| 22 |
-
# Optional:
|
| 23 |
# os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")
|
| 24 |
|
| 25 |
import gradio as gr
|
|
@@ -51,7 +52,7 @@ except ImportError:
|
|
| 51 |
|
| 52 |
# Retrieval utilities
|
| 53 |
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
|
| 54 |
-
from langchain.retrievers.document_compressors import
|
| 55 |
from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 56 |
|
| 57 |
from langchain_community.retrievers import BM25Retriever
|
|
@@ -157,26 +158,17 @@ if use_bm25:
|
|
| 157 |
else:
|
| 158 |
base_retriever = vec_retriever
|
| 159 |
|
| 160 |
-
# Fine-grained compressor (splitter)
|
| 161 |
-
try:
|
| 162 |
-
from langchain_text_splitters import TokenTextSplitter
|
| 163 |
-
splitter_for_compression = TokenTextSplitter(chunk_size=220, chunk_overlap=30) # needs tiktoken
|
| 164 |
-
except Exception:
|
| 165 |
-
from langchain_text_splitters import RecursiveCharacterTextSplitter as FallbackSplitter
|
| 166 |
-
splitter_for_compression = FallbackSplitter(chunk_size=300, chunk_overlap=50)
|
| 167 |
-
|
| 168 |
-
compressor_pipeline = DocumentCompressorPipeline(transformers=[splitter_for_compression])
|
| 169 |
-
|
| 170 |
# ======================================
|
| 171 |
-
# 3) PROMPT (
|
| 172 |
# ======================================
|
| 173 |
SYSTEM_TEMPLATE = (
|
| 174 |
-
"
|
| 175 |
-
"
|
| 176 |
-
"
|
| 177 |
-
"
|
|
|
|
| 178 |
"{context}\n\n"
|
| 179 |
-
"
|
| 180 |
)
|
| 181 |
qa_prompt = ChatPromptTemplate.from_template(SYSTEM_TEMPLATE)
|
| 182 |
|
|
@@ -205,10 +197,10 @@ memory = ConversationBufferMemory(
|
|
| 205 |
return_messages=True,
|
| 206 |
)
|
| 207 |
|
| 208 |
-
# Multi-Query
|
| 209 |
mqr = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=llm, include_original=True)
|
| 210 |
|
| 211 |
-
# Cross-encoder reranker (lighter)
|
| 212 |
cross_encoder = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
| 213 |
reranker = CrossEncoderReranker(model=cross_encoder, top_n=4)
|
| 214 |
|
|
@@ -225,16 +217,16 @@ qa_chain = ConversationalRetrievalChain.from_llm(
|
|
| 225 |
combine_docs_chain_kwargs={"prompt": qa_prompt},
|
| 226 |
get_chat_history=lambda h: h,
|
| 227 |
rephrase_question=False,
|
| 228 |
-
return_source_documents=False,
|
| 229 |
)
|
| 230 |
|
| 231 |
-
def chat_interface(question, history):
|
| 232 |
-
"""Wrap the RAG chain to return a clean text answer."""
|
| 233 |
try:
|
| 234 |
-
result = qa_chain.invoke({"question": question})
|
| 235 |
answer = result.get("answer", "")
|
| 236 |
if not answer:
|
| 237 |
-
return "
|
| 238 |
return answer
|
| 239 |
except Exception as e:
|
| 240 |
return (
|
|
@@ -270,9 +262,11 @@ banner_tab_content = """
|
|
| 270 |
banner_tab = gr.Markdown(banner_tab_content)
|
| 271 |
|
| 272 |
# ============================
|
| 273 |
-
# 7) Chat tab (Blocks + Chatbot with height
|
| 274 |
# ============================
|
| 275 |
|
|
|
|
|
|
|
| 276 |
# CSS: make chat area taller and widen app a bit
|
| 277 |
custom_css = """
|
| 278 |
.gradio-container { max-width: 1200px !important; }
|
|
@@ -288,16 +282,18 @@ def _user_submit(user_msg, history):
|
|
| 288 |
history = history + [[user_msg, None]]
|
| 289 |
return "", history
|
| 290 |
|
| 291 |
-
def _bot_respond(history):
|
| 292 |
-
"""Generate bot answer for the last user turn."""
|
| 293 |
user_msg = history[-1][0]
|
| 294 |
# Pass previous history to our RAG function (excluding the current empty bot turn)
|
| 295 |
-
answer = chat_interface(user_msg, history[:-1])
|
| 296 |
history[-1][1] = answer
|
| 297 |
return history
|
| 298 |
|
| 299 |
with gr.Blocks(theme=theme, css=custom_css) as chatbot_gradio_app:
|
| 300 |
gr.Markdown("<h1 style='text-align:center;color:#f3efe0;'>Green Greta</h1>")
|
|
|
|
|
|
|
| 301 |
chat = gr.Chatbot(label="Chatbot", height=700, elem_id="greta-chat", show_copy_button=True)
|
| 302 |
with gr.Row():
|
| 303 |
msg = gr.Textbox(placeholder="Type a message…", scale=9)
|
|
@@ -307,21 +303,21 @@ with gr.Blocks(theme=theme, css=custom_css) as chatbot_gradio_app:
|
|
| 307 |
undo = gr.Button("↩︎ Undo")
|
| 308 |
clear = gr.Button("🗑 Clear")
|
| 309 |
|
| 310 |
-
# Submit via button or Enter
|
| 311 |
send.click(_user_submit, [msg, chat], [msg, chat], queue=False).then(
|
| 312 |
-
_bot_respond, [chat], [chat]
|
| 313 |
)
|
| 314 |
msg.submit(_user_submit, [msg, chat], [msg, chat], queue=False).then(
|
| 315 |
-
_bot_respond, [chat], [chat]
|
| 316 |
)
|
| 317 |
|
| 318 |
-
# Utilities
|
| 319 |
clear.click(lambda: [], None, chat, queue=False)
|
| 320 |
undo.click(lambda h: h[:-1] if h else h, chat, chat, queue=False)
|
| 321 |
retry.click(
|
| 322 |
lambda h: (h[:-1] + [[h[-1][0], None]]) if h else h, # re-ask last user msg
|
| 323 |
chat, chat, queue=False
|
| 324 |
-
).then(_bot_respond, [chat], [chat])
|
| 325 |
|
| 326 |
# ============================
|
| 327 |
# 8) Tabs + launch
|
|
|
|
| 4 |
- Chat tab uses Blocks + Chatbot(height=...) ✅
|
| 5 |
- LLM: meta-llama/Meta-Llama-3.1-8B-Instruct ✅
|
| 6 |
- RAG: e5-base-v2 + (BM25+Vector) with safe fallback + Multi-Query + reranker ✅
|
| 7 |
+
- Language selector: Auto, English, German, French, Italian, Portuguese, Hindi, Spanish, Thai ✅
|
| 8 |
- No JSON output leakage ✅
|
| 9 |
=========================================================
|
| 10 |
"""
|
|
|
|
| 20 |
os.environ.setdefault("ANONYMIZED_TELEMETRY", "false")
|
| 21 |
os.environ.setdefault("CHROMA_TELEMETRY_ENABLED", "FALSE")
|
| 22 |
os.environ.setdefault("USER_AGENT", "green-greta/1.0 (+contact-or-repo)")
|
| 23 |
+
# Optional: reproducible CPU math (silences some TF logs)
|
| 24 |
# os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")
|
| 25 |
|
| 26 |
import gradio as gr
|
|
|
|
| 52 |
|
| 53 |
# Retrieval utilities
|
| 54 |
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
|
| 55 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
| 56 |
from langchain.retrievers.multi_query import MultiQueryRetriever
|
| 57 |
|
| 58 |
from langchain_community.retrievers import BM25Retriever
|
|
|
|
| 158 |
else:
|
| 159 |
base_retriever = vec_retriever
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
# ======================================
|
| 162 |
+
# 3) PROMPT (with target language variable)
|
| 163 |
# ======================================
|
| 164 |
SYSTEM_TEMPLATE = (
|
| 165 |
+
"You are Greta, a bilingual recycling & sustainability assistant.\n"
|
| 166 |
+
"- Always answer in the *target language*: {target_language}.\n"
|
| 167 |
+
"- If target_language is 'Auto', detect the user's language and answer in that language.\n"
|
| 168 |
+
"- Be direct, practical, and base your answer only on the snippets below; if they are insufficient, say so and propose actionable next steps.\n"
|
| 169 |
+
"- Do not reveal or mention 'snippets' or internal tools.\n\n"
|
| 170 |
"{context}\n\n"
|
| 171 |
+
"Question: {question}"
|
| 172 |
)
|
| 173 |
qa_prompt = ChatPromptTemplate.from_template(SYSTEM_TEMPLATE)
|
| 174 |
|
|
|
|
| 197 |
return_messages=True,
|
| 198 |
)
|
| 199 |
|
| 200 |
+
# Multi-Query boosts recall by generating paraphrases
|
| 201 |
mqr = MultiQueryRetriever.from_llm(retriever=base_retriever, llm=llm, include_original=True)
|
| 202 |
|
| 203 |
+
# Cross-encoder reranker (lighter/faster than large)
|
| 204 |
cross_encoder = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
| 205 |
reranker = CrossEncoderReranker(model=cross_encoder, top_n=4)
|
| 206 |
|
|
|
|
| 217 |
combine_docs_chain_kwargs={"prompt": qa_prompt},
|
| 218 |
get_chat_history=lambda h: h,
|
| 219 |
rephrase_question=False,
|
| 220 |
+
return_source_documents=False,
|
| 221 |
)
|
| 222 |
|
| 223 |
+
def chat_interface(question: str, history, target_language: str = "Auto"):
|
| 224 |
+
"""Wrap the RAG chain to return a clean text answer in the requested language."""
|
| 225 |
try:
|
| 226 |
+
result = qa_chain.invoke({"question": question, "target_language": target_language})
|
| 227 |
answer = result.get("answer", "")
|
| 228 |
if not answer:
|
| 229 |
+
return "Sorry, I couldn't produce a useful answer from the available information."
|
| 230 |
return answer
|
| 231 |
except Exception as e:
|
| 232 |
return (
|
|
|
|
| 262 |
banner_tab = gr.Markdown(banner_tab_content)
|
| 263 |
|
| 264 |
# ============================
|
| 265 |
+
# 7) Chat tab (Blocks + Chatbot with height + language selector)
|
| 266 |
# ============================
|
| 267 |
|
| 268 |
+
SUPPORTED_LANGS = ["Auto", "English", "German", "French", "Italian", "Portuguese", "Hindi", "Spanish", "Thai"]
|
| 269 |
+
|
| 270 |
# CSS: make chat area taller and widen app a bit
|
| 271 |
custom_css = """
|
| 272 |
.gradio-container { max-width: 1200px !important; }
|
|
|
|
| 282 |
history = history + [[user_msg, None]]
|
| 283 |
return "", history
|
| 284 |
|
| 285 |
+
def _bot_respond(history, target_language):
|
| 286 |
+
"""Generate bot answer for the last user turn in the requested language."""
|
| 287 |
user_msg = history[-1][0]
|
| 288 |
# Pass previous history to our RAG function (excluding the current empty bot turn)
|
| 289 |
+
answer = chat_interface(user_msg, history[:-1], target_language=target_language or "Auto")
|
| 290 |
history[-1][1] = answer
|
| 291 |
return history
|
| 292 |
|
| 293 |
with gr.Blocks(theme=theme, css=custom_css) as chatbot_gradio_app:
|
| 294 |
gr.Markdown("<h1 style='text-align:center;color:#f3efe0;'>Green Greta</h1>")
|
| 295 |
+
with gr.Row():
|
| 296 |
+
lang_sel = gr.Dropdown(SUPPORTED_LANGS, value="Auto", label="Answer language")
|
| 297 |
chat = gr.Chatbot(label="Chatbot", height=700, elem_id="greta-chat", show_copy_button=True)
|
| 298 |
with gr.Row():
|
| 299 |
msg = gr.Textbox(placeholder="Type a message…", scale=9)
|
|
|
|
| 303 |
undo = gr.Button("↩︎ Undo")
|
| 304 |
clear = gr.Button("🗑 Clear")
|
| 305 |
|
| 306 |
+
# Submit via button or Enter (pass language value into the responder)
|
| 307 |
send.click(_user_submit, [msg, chat], [msg, chat], queue=False).then(
|
| 308 |
+
_bot_respond, [chat, lang_sel], [chat]
|
| 309 |
)
|
| 310 |
msg.submit(_user_submit, [msg, chat], [msg, chat], queue=False).then(
|
| 311 |
+
_bot_respond, [chat, lang_sel], [chat]
|
| 312 |
)
|
| 313 |
|
| 314 |
+
# Utilities respect current language selection too
|
| 315 |
clear.click(lambda: [], None, chat, queue=False)
|
| 316 |
undo.click(lambda h: h[:-1] if h else h, chat, chat, queue=False)
|
| 317 |
retry.click(
|
| 318 |
lambda h: (h[:-1] + [[h[-1][0], None]]) if h else h, # re-ask last user msg
|
| 319 |
chat, chat, queue=False
|
| 320 |
+
).then(_bot_respond, [chat, lang_sel], [chat])
|
| 321 |
|
| 322 |
# ============================
|
| 323 |
# 8) Tabs + launch
|