File size: 18,572 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import os
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np

from modules.portaspeech.portaspeech import PortaSpeech
from modules.syntaspeech.multi_window_disc import Discriminator
from tasks.tts.fs2 import FastSpeech2Task
from utils.hparams import hparams
from utils.tts_utils import get_focus_rate, get_phone_coverage_rate, get_diagonal_focus_rate, mel2token_to_dur
from utils import num_params, tensors_to_scalars
from utils.pitch_utils import denorm_f0, norm_f0
from data_gen.tts.data_gen_utils import get_pitch
from utils.dtw import dtw as DTW

from utils.plot import spec_to_figure
from utils.text.text_encoder import build_token_encoder


class PortaSpeechAdvTask(FastSpeech2Task):
    def __init__(self):
        super().__init__()
        data_dir = hparams['binary_data_dir']
        self.word_encoder = build_token_encoder(f'{data_dir}/word_set.json')
        self.build_disc_model()
        self.mse_loss_fn = torch.nn.MSELoss()
        
    def build_tts_model(self):
        ph_dict_size = len(self.token_encoder)
        word_dict_size = len(self.word_encoder)
        self.model = PortaSpeech(ph_dict_size, word_dict_size, hparams)

        self.gen_params = [p for p in self.model.parameters() if p.requires_grad]
        self.dp_params = [p for k, p in self.model.named_parameters() if (('dur_predictor' in k) and p.requires_grad)]
        self.gen_params_except_dp = [p for k, p in self.model.named_parameters() if (('dur_predictor' not in k) and p.requires_grad)]        
        self.bert_params = [p for k, p in self.model.named_parameters() if (('bert' in k) and p.requires_grad)]
        self.gen_params_except_bert_and_dp = [p for k, p in self.model.named_parameters() if ('dur_predictor' not in k) and ('bert' not in k) and p.requires_grad ]

        self.use_bert = True if len(self.bert_params) > 0 else False

    def build_disc_model(self):
        disc_win_num = hparams['disc_win_num']
        h = hparams['mel_disc_hidden_size']
        self.mel_disc = Discriminator(
            time_lengths=[32, 64, 128][:disc_win_num],
            freq_length=80, hidden_size=h, kernel=(3, 3)
        )
        self.disc_params = list(self.mel_disc.parameters())

    def on_train_start(self):
        super().on_train_start()
        for n, m in self.model.named_children():
            num_params(m, model_name=n)
        if hasattr(self.model, 'fvae'):
            for n, m in self.model.fvae.named_children():
                num_params(m, model_name=f'fvae.{n}')

    def _training_step(self, sample, batch_idx, optimizer_idx):
        loss_output = {}
        loss_weights = {}
        disc_start = self.global_step >= hparams["disc_start_steps"] and hparams['lambda_mel_adv'] > 0
        if optimizer_idx == 0:
            #######################
            #      Generator      #
            #######################
            loss_output, model_out = self.run_model(sample, infer=False)
            self.model_out_gt = self.model_out = \
                {k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)}
            if disc_start:
                mel_p = model_out['mel_out']
                if hasattr(self.model, 'out2mel'):
                    mel_p = self.model.out2mel(mel_p)
                o_ = self.mel_disc(mel_p)
                p_, pc_ = o_['y'], o_['y_c']
                if p_ is not None:
                    loss_output['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size()))
                    loss_weights['a'] = hparams['lambda_mel_adv']
                if pc_ is not None:
                    loss_output['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size()))
                    loss_weights['ac'] = hparams['lambda_mel_adv']
        else:
            #######################
            #    Discriminator    #
            #######################
            if disc_start and self.global_step % hparams['disc_interval'] == 0:
                model_out = self.model_out_gt
                mel_g = sample['mels']
                mel_p = model_out['mel_out']
                o = self.mel_disc(mel_g)
                p, pc = o['y'], o['y_c']
                o_ = self.mel_disc(mel_p)
                p_, pc_ = o_['y'], o_['y_c']
                if p_ is not None:
                    loss_output["r"] = self.mse_loss_fn(p, p.new_ones(p.size()))
                    loss_output["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size()))
                if pc_ is not None:
                    loss_output["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size()))
                    loss_output["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size()))
        total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad])
        loss_output['batch_size'] = sample['txt_tokens'].size()[0]
        return total_loss, loss_output

    def run_model(self, sample, infer=False, *args, **kwargs):
        txt_tokens = sample['txt_tokens']
        word_tokens = sample['word_tokens']
        spk_embed = sample.get('spk_embed')
        spk_id = sample.get('spk_ids')
        if not infer:
            output = self.model(txt_tokens, word_tokens,
                                ph2word=sample['ph2word'],
                                mel2word=sample['mel2word'],
                                mel2ph=sample['mel2ph'],
                                word_len=sample['word_lengths'].max(),
                                tgt_mels=sample['mels'],
                                pitch=sample.get('pitch'),
                                spk_embed=spk_embed,
                                spk_id=spk_id,
                                infer=False,
                                global_step=self.global_step,
                                graph_lst=sample['graph_lst'], 
                                etypes_lst=sample['etypes_lst'],
                                bert_feats=sample.get("bert_feats"),
                                cl_feats=sample.get("cl_feats")
                                )
            losses = {}
            losses['kl_v'] = output['kl'].detach()
            losses_kl = output['kl']
            losses_kl = torch.clamp(losses_kl, min=hparams['kl_min'])
            losses_kl = min(self.global_step / hparams['kl_start_steps'], 1) * losses_kl
            losses_kl = losses_kl * hparams['lambda_kl']
            losses['kl'] = losses_kl
            
            self.add_mel_loss(output['mel_out'], sample['mels'], losses)
            if hparams['dur_level'] == 'word':
                self.add_dur_loss(
                    output['dur'], sample['mel2word'], sample['word_lengths'], sample['txt_tokens'], losses)
                self.get_attn_stats(output['attn'], sample, losses)
            else:
                super(PortaSpeechAdvTask, self).add_dur_loss(output['dur'], sample['mel2ph'], sample['txt_tokens'], losses)
            return losses, output
        else:
            use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur'])
            output = self.model(
                txt_tokens, word_tokens,
                ph2word=sample['ph2word'],
                word_len=sample['word_lengths'].max(),
                pitch=sample.get('pitch'),
                mel2ph=sample['mel2ph'] if use_gt_dur else None,
                mel2word=sample['mel2word'] if use_gt_dur else None,
                tgt_mels=sample['mels'],
                infer=True,
                spk_embed=spk_embed,
                spk_id=spk_id,
                graph_lst=sample['graph_lst'], 
                etypes_lst=sample['etypes_lst'],
                bert_feats=sample.get("bert_feats"),
                cl_feats=sample.get("cl_feats")
            )
            return output

    def add_dur_loss(self, dur_pred, mel2token, word_len, txt_tokens, losses=None):
        T = word_len.max()
        dur_gt = mel2token_to_dur(mel2token, T).float()
        nonpadding = (torch.arange(T).to(dur_pred.device)[None, :] < word_len[:, None]).float()
        dur_pred = dur_pred * nonpadding
        dur_gt = dur_gt * nonpadding
        wdur = F.l1_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none')
        wdur = (wdur * nonpadding).sum() / nonpadding.sum()

        if hparams['lambda_word_dur'] > 0:
            losses['wdur'] = wdur * hparams['lambda_word_dur']
        if hparams['lambda_sent_dur'] > 0:
            sent_dur_p = dur_pred.sum(-1)
            sent_dur_g = dur_gt.sum(-1)
            sdur_loss = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean')
            losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']

        with torch.no_grad():
            # calculate word-level abs_dur_error in micro-second
            abs_word_dur_error = F.l1_loss(dur_pred , dur_gt, reduction='none')
            abs_word_dur_error = (abs_word_dur_error * nonpadding).sum() / nonpadding.sum()
            abs_word_dur_error = abs_word_dur_error * hparams['hop_size'] / hparams['audio_sample_rate'] * 1000
            losses['abs_word_dur_error'] = abs_word_dur_error
            # calculate word-level abs_dur_error in second
            sent_dur_p = dur_pred.sum(-1)
            sent_dur_g = dur_gt.sum(-1)
            abs_sent_dur_error = F.l1_loss(sent_dur_p, sent_dur_g, reduction='mean').mean()
            abs_sent_dur_error = abs_sent_dur_error * hparams['hop_size'] / hparams['audio_sample_rate']
            losses['abs_sent_dur_error'] = abs_sent_dur_error

    def validation_step(self, sample, batch_idx):
        outputs = {}
        outputs['losses'] = {}
        outputs['losses'], model_out = self.run_model(sample)
        outputs['total_loss'] = sum(outputs['losses'].values())
        outputs['nsamples'] = sample['nsamples']
        outputs = tensors_to_scalars(outputs)
        if self.global_step % hparams['valid_infer_interval'] == 0 \
                and batch_idx < hparams['num_valid_plots']:
            valid_results = self.save_valid_result(sample, batch_idx, model_out)
            wav_gt = valid_results['wav_gt']
            mel_gt = valid_results['mel_gt']
            wav_pred = valid_results['wav_pred']
            mel_pred = valid_results['mel_pred']
            f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
            f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
            manhattan_distance = lambda x, y: np.abs(x - y)
            dist, cost, acc, path = DTW(f0_pred_, f0_gt_, manhattan_distance)
            outputs['losses']['f0_dtw'] = dist / len(f0_gt_)
        return outputs

    def save_valid_result(self, sample, batch_idx, model_out):
        sr = hparams['audio_sample_rate']
        f0_gt = None
        mel_out = model_out['mel_out']
        if sample.get('f0') is not None:
            f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu())
        self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt)
        
        # if self.global_step > 0:
        wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt)
        self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr)
        # with gt duration
        model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True)
        dur_info = self.get_plot_dur_info(sample, model_out)
        del dur_info['dur_pred']
        wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
        self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr)
        self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}',
                        dur_info=dur_info, f0s=f0_gt)

        # with pred duration
        if not hparams['use_gt_dur']:
            model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False)
            dur_info = self.get_plot_dur_info(sample, model_out)
            self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}',
                            dur_info=dur_info, f0s=f0_gt)
            wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
            self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr)
        # gt wav
        mel_gt = sample['mels'][0].cpu()
        wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
        if self.global_step <= hparams['valid_infer_interval']:
            self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr)
        
        # add attn plot
        if self.global_step > 0 and hparams['dur_level'] == 'word':
            self.logger.add_figure(f'attn_{batch_idx}', spec_to_figure(model_out['attn'][0]), self.global_step)

        return {'wav_gt': wav_gt, 'wav_pred': wav_pred, 'mel_gt': mel_gt, 'mel_pred': model_out['mel_out'][0].cpu()}

    def get_attn_stats(self, attn, sample, logging_outputs, prefix=''):
        # diagonal_focus_rate
        txt_lengths = sample['txt_lengths'].float()
        mel_lengths = sample['mel_lengths'].float()
        src_padding_mask = sample['txt_tokens'].eq(0)
        target_padding_mask = sample['mels'].abs().sum(-1).eq(0)
        src_seg_mask = sample['txt_tokens'].eq(self.seg_idx)
        attn_ks = txt_lengths.float() / mel_lengths.float()

        focus_rate = get_focus_rate(attn, src_padding_mask, target_padding_mask).mean().data
        phone_coverage_rate = get_phone_coverage_rate(
            attn, src_padding_mask, src_seg_mask, target_padding_mask).mean()
        diagonal_focus_rate, diag_mask = get_diagonal_focus_rate(
            attn, attn_ks, mel_lengths, src_padding_mask, target_padding_mask)
        logging_outputs[f'{prefix}fr'] = focus_rate.mean().data
        logging_outputs[f'{prefix}pcr'] = phone_coverage_rate.mean().data
        logging_outputs[f'{prefix}dfr'] = diagonal_focus_rate.mean().data

    def get_plot_dur_info(self, sample, model_out):
        if hparams['dur_level'] == 'word':
            T_txt = sample['word_lengths'].max()
            dur_gt = mel2token_to_dur(sample['mel2word'], T_txt)[0]
            dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
            txt = sample['ph_words'][0].split(" ")
        else:
            T_txt = sample['txt_tokens'].shape[1]
            dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0]
            dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
            txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
            txt = txt.split(" ")
        return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}

    def build_optimizer(self, model):
        
        optimizer_gen = torch.optim.AdamW(
            self.gen_params,
            lr=hparams['lr'],
            betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
            weight_decay=hparams['weight_decay'])

        optimizer_disc = torch.optim.AdamW(
            self.disc_params,
            lr=hparams['disc_lr'],
            betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
            **hparams["discriminator_optimizer_params"]) if len(self.disc_params) > 0 else None

        return [optimizer_gen, optimizer_disc]

    def build_scheduler(self, optimizer):
        return [
            FastSpeechTask.build_scheduler(self, optimizer[0]), # Generator Scheduler
            torch.optim.lr_scheduler.StepLR(optimizer=optimizer[1], # Discriminator Scheduler
                **hparams["discriminator_scheduler_params"]),
        ]

    def on_before_optimization(self, opt_idx):
        if opt_idx == 0:
            nn.utils.clip_grad_norm_(self.dp_params, hparams['clip_grad_norm'])
            if self.use_bert:
                nn.utils.clip_grad_norm_(self.bert_params, hparams['clip_grad_norm'])
                nn.utils.clip_grad_norm_(self.gen_params_except_bert_and_dp, hparams['clip_grad_norm'])
            else:
                nn.utils.clip_grad_norm_(self.gen_params_except_dp, hparams['clip_grad_norm'])
        else:
            nn.utils.clip_grad_norm_(self.disc_params, hparams["clip_grad_norm"])

    def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx):
        if self.scheduler is not None:
            self.scheduler[0].step(self.global_step // hparams['accumulate_grad_batches'])
            self.scheduler[1].step(self.global_step // hparams['accumulate_grad_batches'])

    ############
    # infer
    ############
    def test_start(self):
        super().test_start()
        if hparams.get('save_attn', False):
            os.makedirs(f'{self.gen_dir}/attn', exist_ok=True)
        self.model.store_inverse_all()

    def test_step(self, sample, batch_idx):
        assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
        outputs = self.run_model(sample, infer=True)
        text = sample['text'][0]
        item_name = sample['item_name'][0]
        tokens = sample['txt_tokens'][0].cpu().numpy()
        mel_gt = sample['mels'][0].cpu().numpy()
        mel_pred = outputs['mel_out'][0].cpu().numpy()
        mel2ph = sample['mel2ph'][0].cpu().numpy()
        mel2ph_pred = None
        str_phs = self.token_encoder.decode(tokens, strip_padding=True)
        base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]'
        if text is not None:
            base_fn += text.replace(":", "$3A")[:80]
        base_fn = base_fn.replace(' ', '_')
        gen_dir = self.gen_dir
        wav_pred = self.vocoder.spec2wav(mel_pred)
        self.saving_result_pool.add_job(self.save_result, args=[
            wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred])
        if hparams['save_gt']:
            wav_gt = self.vocoder.spec2wav(mel_gt)
            self.saving_result_pool.add_job(self.save_result, args=[
                wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph])
        if hparams.get('save_attn', False):
            attn = outputs['attn'][0].cpu().numpy()
            np.save(f'{gen_dir}/attn/{item_name}.npy', attn)
        # save f0 for pitch dtw
        f0_pred_, _ = get_pitch(wav_pred, mel_pred, hparams)
        f0_gt_, _ = get_pitch(wav_gt, mel_gt, hparams)
        np.save(f'{gen_dir}/f0/{item_name}.npy', f0_pred_)
        np.save(f'{gen_dir}/f0/{item_name}_gt.npy', f0_gt_)

        print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
        return {
            'item_name': item_name,
            'text': text,
            'ph_tokens': self.token_encoder.decode(tokens.tolist()),
            'wav_fn_pred': base_fn % 'P',
            'wav_fn_gt': base_fn % 'G',
        }