lmzjms commited on
Commit
9206300
·
1 Parent(s): 8121fee

Upload 591 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. NeuralSeq/LICENSE +21 -0
  2. NeuralSeq/README.md +9 -0
  3. NeuralSeq/configs/config_base.yaml +42 -0
  4. NeuralSeq/configs/singing/base.yaml +42 -0
  5. NeuralSeq/configs/singing/fs2.yaml +3 -0
  6. NeuralSeq/configs/tts/base.yaml +95 -0
  7. NeuralSeq/configs/tts/base_zh.yaml +3 -0
  8. NeuralSeq/configs/tts/emotion/base_text2mel.yaml +17 -0
  9. NeuralSeq/configs/tts/emotion/pre_align.py +25 -0
  10. NeuralSeq/configs/tts/fs2.yaml +80 -0
  11. NeuralSeq/configs/tts/hifigan.yaml +21 -0
  12. NeuralSeq/configs/tts/libritts/__pycache__/pre_align.cpython-38.pyc +0 -0
  13. NeuralSeq/configs/tts/libritts/base_text2mel.yaml +14 -0
  14. NeuralSeq/configs/tts/libritts/fs2.yaml +3 -0
  15. NeuralSeq/configs/tts/libritts/pre_align.py +27 -0
  16. NeuralSeq/configs/tts/libritts/pwg.yaml +8 -0
  17. NeuralSeq/configs/tts/lj/base_mel2wav.yaml +3 -0
  18. NeuralSeq/configs/tts/lj/base_text2mel.yaml +13 -0
  19. NeuralSeq/configs/tts/lj/fs2.yaml +3 -0
  20. NeuralSeq/configs/tts/lj/hifigan.yaml +3 -0
  21. NeuralSeq/configs/tts/lj/pwg.yaml +3 -0
  22. NeuralSeq/configs/tts/pwg.yaml +110 -0
  23. NeuralSeq/data_gen/tts/__pycache__/base_binarizer.cpython-38.pyc +0 -0
  24. NeuralSeq/data_gen/tts/__pycache__/base_binarizer_emotion.cpython-38.pyc +0 -0
  25. NeuralSeq/data_gen/tts/__pycache__/base_preprocess.cpython-38.pyc +0 -0
  26. NeuralSeq/data_gen/tts/__pycache__/data_gen_utils.cpython-37.pyc +0 -0
  27. NeuralSeq/data_gen/tts/__pycache__/data_gen_utils.cpython-38.pyc +0 -0
  28. NeuralSeq/data_gen/tts/base_binarizer.py +224 -0
  29. NeuralSeq/data_gen/tts/base_binarizer_emotion.py +352 -0
  30. NeuralSeq/data_gen/tts/base_preprocess.py +254 -0
  31. NeuralSeq/data_gen/tts/binarizer_zh.py +59 -0
  32. NeuralSeq/data_gen/tts/data_gen_utils.py +357 -0
  33. NeuralSeq/data_gen/tts/emotion/__pycache__/audio.cpython-38.pyc +0 -0
  34. NeuralSeq/data_gen/tts/emotion/__pycache__/inference.cpython-38.pyc +0 -0
  35. NeuralSeq/data_gen/tts/emotion/__pycache__/model.cpython-38.pyc +0 -0
  36. NeuralSeq/data_gen/tts/emotion/__pycache__/params_data.cpython-38.pyc +0 -0
  37. NeuralSeq/data_gen/tts/emotion/__pycache__/params_model.cpython-38.pyc +0 -0
  38. NeuralSeq/data_gen/tts/emotion/audio.py +107 -0
  39. NeuralSeq/data_gen/tts/emotion/inference.py +177 -0
  40. NeuralSeq/data_gen/tts/emotion/model.py +78 -0
  41. NeuralSeq/data_gen/tts/emotion/params_data.py +29 -0
  42. NeuralSeq/data_gen/tts/emotion/params_model.py +11 -0
  43. NeuralSeq/data_gen/tts/emotion/test_emotion.py +184 -0
  44. NeuralSeq/data_gen/tts/txt_processors/__init__.py +1 -0
  45. NeuralSeq/data_gen/tts/txt_processors/__pycache__/__init__.cpython-38.pyc +0 -0
  46. NeuralSeq/data_gen/tts/txt_processors/__pycache__/base_text_processor.cpython-38.pyc +0 -0
  47. NeuralSeq/data_gen/tts/txt_processors/__pycache__/en.cpython-38.pyc +0 -0
  48. NeuralSeq/data_gen/tts/txt_processors/base_text_processor.py +47 -0
  49. NeuralSeq/data_gen/tts/txt_processors/en.py +77 -0
  50. NeuralSeq/data_gen/tts/txt_processors/zh.py +43 -0
NeuralSeq/LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jinglin Liu
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
NeuralSeq/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: DiffSinger🎶 Diffusion for Singing Voice Synthesis
3
+ emoji: 🎶
4
+ colorFrom: purple
5
+ colorTo: blue
6
+ sdk: gradio
7
+ app_file: "inference/svs/gradio/infer.py"
8
+ pinned: false
9
+ ---
NeuralSeq/configs/config_base.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # task
2
+ binary_data_dir: ''
3
+ work_dir: '' # experiment directory.
4
+ infer: false # infer
5
+ seed: 1234
6
+ debug: false
7
+ save_codes:
8
+ - configs
9
+ - modules
10
+ - tasks
11
+ - utils
12
+ - usr
13
+
14
+ #############
15
+ # dataset
16
+ #############
17
+ ds_workers: 1
18
+ test_num: 100
19
+ valid_num: 100
20
+ endless_ds: false
21
+ sort_by_len: true
22
+
23
+ #########
24
+ # train and eval
25
+ #########
26
+ load_ckpt: ''
27
+ save_ckpt: true
28
+ save_best: false
29
+ num_ckpt_keep: 3
30
+ clip_grad_norm: 0
31
+ accumulate_grad_batches: 1
32
+ log_interval: 100
33
+ num_sanity_val_steps: 5 # steps of validation at the beginning
34
+ check_val_every_n_epoch: 10
35
+ val_check_interval: 2000
36
+ max_epochs: 1000
37
+ max_updates: 160000
38
+ max_tokens: 31250
39
+ max_sentences: 100000
40
+ max_eval_tokens: -1
41
+ max_eval_sentences: -1
42
+ test_input_dir: ''
NeuralSeq/configs/singing/base.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_config:
2
+ - configs/tts/base.yaml
3
+ - configs/tts/base_zh.yaml
4
+
5
+
6
+ datasets: []
7
+ test_prefixes: []
8
+ test_num: 0
9
+ valid_num: 0
10
+
11
+ pre_align_cls: data_gen.singing.pre_align.SingingPreAlign
12
+ binarizer_cls: data_gen.singing.binarize.SingingBinarizer
13
+ pre_align_args:
14
+ use_tone: false # for ZH
15
+ forced_align: mfa
16
+ use_sox: true
17
+ hop_size: 128 # Hop size.
18
+ fft_size: 512 # FFT size.
19
+ win_size: 512 # FFT size.
20
+ max_frames: 8000
21
+ fmin: 50 # Minimum freq in mel basis calculation.
22
+ fmax: 11025 # Maximum frequency in mel basis calculation.
23
+ pitch_type: frame
24
+
25
+ hidden_size: 256
26
+ mel_loss: "ssim:0.5|l1:0.5"
27
+ lambda_f0: 0.0
28
+ lambda_uv: 0.0
29
+ lambda_energy: 0.0
30
+ lambda_ph_dur: 0.0
31
+ lambda_sent_dur: 0.0
32
+ lambda_word_dur: 0.0
33
+ predictor_grad: 0.0
34
+ use_spk_embed: true
35
+ use_spk_id: false
36
+
37
+ max_tokens: 20000
38
+ max_updates: 400000
39
+ num_spk: 100
40
+ save_f0: true
41
+ use_gt_dur: true
42
+ use_gt_f0: true
NeuralSeq/configs/singing/fs2.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ base_config:
2
+ - configs/tts/fs2.yaml
3
+ - configs/singing/base.yaml
NeuralSeq/configs/tts/base.yaml ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # task
2
+ base_config: configs/config_base.yaml
3
+ task_cls: ''
4
+ #############
5
+ # dataset
6
+ #############
7
+ raw_data_dir: ''
8
+ processed_data_dir: ''
9
+ binary_data_dir: ''
10
+ dict_dir: ''
11
+ pre_align_cls: ''
12
+ binarizer_cls: data_gen.tts.base_binarizer.BaseBinarizer
13
+ pre_align_args:
14
+ use_tone: true # for ZH
15
+ forced_align: mfa
16
+ use_sox: false
17
+ txt_processor: en
18
+ allow_no_txt: false
19
+ denoise: false
20
+ binarization_args:
21
+ shuffle: false
22
+ with_txt: true
23
+ with_wav: false
24
+ with_align: true
25
+ with_spk_embed: true
26
+ with_f0: true
27
+ with_f0cwt: true
28
+
29
+ loud_norm: false
30
+ endless_ds: true
31
+ reset_phone_dict: true
32
+
33
+ test_num: 100
34
+ valid_num: 100
35
+ max_frames: 1550
36
+ max_input_tokens: 1550
37
+ audio_num_mel_bins: 80
38
+ audio_sample_rate: 22050
39
+ hop_size: 256 # For 22050Hz, 275 ~= 12.5 ms (0.0125 * sample_rate)
40
+ win_size: 1024 # For 22050Hz, 1100 ~= 50 ms (If None, win_size: fft_size) (0.05 * sample_rate)
41
+ fmin: 80 # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
42
+ fmax: 7600 # To be increased/reduced depending on data.
43
+ fft_size: 1024 # Extra window size is filled with 0 paddings to match this parameter
44
+ min_level_db: -100
45
+ num_spk: 1
46
+ mel_vmin: -6
47
+ mel_vmax: 1.5
48
+ ds_workers: 4
49
+
50
+ #########
51
+ # model
52
+ #########
53
+ dropout: 0.1
54
+ enc_layers: 4
55
+ dec_layers: 4
56
+ hidden_size: 384
57
+ num_heads: 2
58
+ prenet_dropout: 0.5
59
+ prenet_hidden_size: 256
60
+ stop_token_weight: 5.0
61
+ enc_ffn_kernel_size: 9
62
+ dec_ffn_kernel_size: 9
63
+ ffn_act: gelu
64
+ ffn_padding: 'SAME'
65
+
66
+
67
+ ###########
68
+ # optimization
69
+ ###########
70
+ lr: 2.0
71
+ warmup_updates: 8000
72
+ optimizer_adam_beta1: 0.9
73
+ optimizer_adam_beta2: 0.98
74
+ weight_decay: 0
75
+ clip_grad_norm: 1
76
+
77
+
78
+ ###########
79
+ # train and eval
80
+ ###########
81
+ max_tokens: 30000
82
+ max_sentences: 100000
83
+ max_eval_sentences: 1
84
+ max_eval_tokens: 60000
85
+ train_set_name: 'train'
86
+ valid_set_name: 'valid'
87
+ test_set_name: 'test'
88
+ vocoder: pwg
89
+ vocoder_ckpt: ''
90
+ profile_infer: false
91
+ out_wav_norm: false
92
+ save_gt: false
93
+ save_f0: false
94
+ gen_dir_name: ''
95
+ use_denoise: false
NeuralSeq/configs/tts/base_zh.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ pre_align_args:
2
+ txt_processor: zh_g2pM
3
+ binarizer_cls: data_gen.tts.binarizer_zh.ZhBinarizer
NeuralSeq/configs/tts/emotion/base_text2mel.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ raw_data_dir: 'data/raw/ESD'
2
+ processed_data_dir: 'data/processed/emotion'
3
+ binary_data_dir: 'data/binary/emotion'
4
+ pre_align_cls: configs.tts.emotion.pre_align.EmoPreAlign
5
+ audio_sample_rate: 16000
6
+ binarization_args:
7
+ shuffle: true
8
+ binarizer_cls: data_gen.tts.base_binarizer_emotion.EmotionBinarizer
9
+ use_spk_id: true
10
+ test_num: 200
11
+ num_spk: 10
12
+ pitch_type: frame
13
+ min_frames: 128
14
+ num_test_samples: 30
15
+ mel_loss: "ssim:0.5|l1:0.5"
16
+ vocoder_ckpt: ''
17
+ use_emotion: true
NeuralSeq/configs/tts/emotion/pre_align.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from data_gen.tts.base_preprocess import BasePreprocessor
4
+ import glob
5
+ import re
6
+
7
+ class EmoPreAlign(BasePreprocessor):
8
+
9
+ def meta_data(self):
10
+ spks = ['0012', '0011', '0013', '0014', '0015', '0016', '0017', '0018', '0019', '0020']
11
+ pattern = re.compile('[\t\n ]+')
12
+ for spk in spks:
13
+ for line in open(f"{self.raw_data_dir}/{spk}/{spk}.txt", 'r'): # 打开文件
14
+ line = re.sub(pattern, ' ', line)
15
+ if line == ' ': continue
16
+ split_ = line.split(' ')
17
+ txt = ' '.join(split_[1: -2])
18
+ item_name = split_[0]
19
+ emotion = split_[-2]
20
+ wav_fn = f'{self.raw_data_dir}/{spk}/{emotion}/{item_name}.wav'
21
+ yield item_name, wav_fn, txt, spk, emotion
22
+
23
+
24
+ if __name__ == "__main__":
25
+ EmoPreAlign().process()
NeuralSeq/configs/tts/fs2.yaml ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_config: configs/tts/base.yaml
2
+ task_cls: tasks.tts.fs2.FastSpeech2Task
3
+
4
+ # model
5
+ hidden_size: 256
6
+ dropout: 0.1
7
+ encoder_type: fft # fft|tacotron|tacotron2|conformer
8
+ encoder_K: 8 # for tacotron encoder
9
+ decoder_type: fft # fft|rnn|conv|conformer
10
+ use_pos_embed: true
11
+
12
+ # duration
13
+ predictor_hidden: -1
14
+ predictor_kernel: 5
15
+ predictor_layers: 2
16
+ dur_predictor_kernel: 3
17
+ dur_predictor_layers: 2
18
+ predictor_dropout: 0.5
19
+
20
+ # pitch and energy
21
+ use_pitch_embed: true
22
+ pitch_type: ph # frame|ph|cwt
23
+ use_uv: true
24
+ cwt_hidden_size: 128
25
+ cwt_layers: 2
26
+ cwt_loss: l1
27
+ cwt_add_f0_loss: false
28
+ cwt_std_scale: 0.8
29
+
30
+ pitch_ar: false
31
+ #pitch_embed_type: 0q
32
+ pitch_loss: 'l1' # l1|l2|ssim
33
+ pitch_norm: log
34
+ use_energy_embed: false
35
+
36
+ # reference encoder and speaker embedding
37
+ use_spk_id: false
38
+ use_split_spk_id: false
39
+ use_spk_embed: false
40
+ use_var_enc: false
41
+ lambda_commit: 0.25
42
+ ref_norm_layer: bn
43
+ pitch_enc_hidden_stride_kernel:
44
+ - 0,2,5 # conv_hidden_size, conv_stride, conv_kernel_size. conv_hidden_size=0: use hidden_size
45
+ - 0,2,5
46
+ - 0,2,5
47
+ dur_enc_hidden_stride_kernel:
48
+ - 0,2,3 # conv_hidden_size, conv_stride, conv_kernel_size. conv_hidden_size=0: use hidden_size
49
+ - 0,2,3
50
+ - 0,1,3
51
+
52
+
53
+ # mel
54
+ mel_loss: l1:0.5|ssim:0.5 # l1|l2|gdl|ssim or l1:0.5|ssim:0.5
55
+
56
+ # loss lambda
57
+ lambda_f0: 1.0
58
+ lambda_uv: 1.0
59
+ lambda_energy: 0.1
60
+ lambda_ph_dur: 1.0
61
+ lambda_sent_dur: 1.0
62
+ lambda_word_dur: 1.0
63
+ predictor_grad: 0.1
64
+
65
+ # train and eval
66
+ pretrain_fs_ckpt: ''
67
+ warmup_updates: 2000
68
+ max_tokens: 32000
69
+ max_sentences: 100000
70
+ max_eval_sentences: 1
71
+ max_updates: 120000
72
+ num_valid_plots: 5
73
+ num_test_samples: 0
74
+ test_ids: []
75
+ use_gt_dur: false
76
+ use_gt_f0: false
77
+
78
+ # exp
79
+ dur_loss: mse # huber|mol
80
+ norm_type: gn
NeuralSeq/configs/tts/hifigan.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_config: configs/tts/pwg.yaml
2
+ task_cls: tasks.vocoder.hifigan.HifiGanTask
3
+ resblock: "1"
4
+ adam_b1: 0.8
5
+ adam_b2: 0.99
6
+ upsample_rates: [ 8,8,2,2 ]
7
+ upsample_kernel_sizes: [ 16,16,4,4 ]
8
+ upsample_initial_channel: 128
9
+ resblock_kernel_sizes: [ 3,7,11 ]
10
+ resblock_dilation_sizes: [ [ 1,3,5 ], [ 1,3,5 ], [ 1,3,5 ] ]
11
+
12
+ lambda_mel: 45.0
13
+
14
+ max_samples: 8192
15
+ max_sentences: 16
16
+
17
+ generator_params:
18
+ lr: 0.0002 # Generator's learning rate.
19
+ aux_context_window: 0 # Context window size for auxiliary feature.
20
+ discriminator_optimizer_params:
21
+ lr: 0.0002 # Discriminator's learning rate.
NeuralSeq/configs/tts/libritts/__pycache__/pre_align.cpython-38.pyc ADDED
Binary file (981 Bytes). View file
 
NeuralSeq/configs/tts/libritts/base_text2mel.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ raw_data_dir: 'data/raw/LibriTTS'
2
+ processed_data_dir: 'data/processed/libritts'
3
+ binary_data_dir: 'data/binary/libritts'
4
+ pre_align_cls: configs.tts.libritts.pre_align.LibrittsPreAlign
5
+ binarization_args:
6
+ shuffle: true
7
+ use_spk_id: true
8
+ test_num: 200
9
+ num_spk: 2320
10
+ pitch_type: frame
11
+ min_frames: 128
12
+ num_test_samples: 30
13
+ mel_loss: "ssim:0.5|l1:0.5"
14
+ vocoder_ckpt: ''
NeuralSeq/configs/tts/libritts/fs2.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ base_config:
2
+ - configs/tts/fs2.yaml
3
+ - ./base_text2mel.yaml
NeuralSeq/configs/tts/libritts/pre_align.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from data_gen.tts.base_preprocess import BasePreprocessor
4
+ import glob
5
+
6
+
7
+ class LibrittsPreAlign(BasePreprocessor):
8
+ def meta_data(self):
9
+ wav_fns = sorted(glob.glob(f'{self.raw_data_dir}/*/*/*.wav'))
10
+ for wav_fn in wav_fns:
11
+ item_name = os.path.basename(wav_fn)[:-4]
12
+ txt_fn = f'{wav_fn[:-4]}.normalized.txt'
13
+ with open(txt_fn, 'r') as f:
14
+ txt = f.readlines()
15
+ f.close()
16
+ spk = item_name.split("_")[0]
17
+ # Example:
18
+ #
19
+ # 'item_name': '103_1241_000000_000001'
20
+ # 'wav_fn': 'LibriTTS/train-clean-100/103/1241/103_1241_000000_000001.wav'
21
+ # 'txt': 'matthew Cuthbert is surprised'
22
+ # 'spk_name': '103'
23
+ yield {'item_name': item_name, 'wav_fn': wav_fn, 'txt': txt[0], 'spk_name': spk}
24
+
25
+
26
+ if __name__ == "__main__":
27
+ LibrittsPreAlign().process()
NeuralSeq/configs/tts/libritts/pwg.yaml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ base_config: egs/egs_bases/tts/vocoder/pwg.yaml
2
+ raw_data_dir: 'data/raw/LibriTTS'
3
+ processed_data_dir: 'data/processed/libritts'
4
+ binary_data_dir: 'data/binary/libritts_wav'
5
+ generator_params:
6
+ kernel_size: 5
7
+ num_spk: 400
8
+ max_samples: 20480
NeuralSeq/configs/tts/lj/base_mel2wav.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ raw_data_dir: 'data/raw/LJSpeech-1.1'
2
+ processed_data_dir: 'data/processed/ljspeech'
3
+ binary_data_dir: 'data/binary/ljspeech_wav'
NeuralSeq/configs/tts/lj/base_text2mel.yaml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ raw_data_dir: 'data/raw/LJSpeech-1.1'
2
+ processed_data_dir: 'data/processed/ljspeech'
3
+ binary_data_dir: 'data/binary/ljspeech'
4
+ pre_align_cls: data_gen.tts.lj.pre_align.LJPreAlign
5
+
6
+ pitch_type: cwt
7
+ mel_loss: l1
8
+ num_test_samples: 20
9
+ test_ids: [ 68, 70, 74, 87, 110, 172, 190, 215, 231, 294,
10
+ 316, 324, 402, 422, 485, 500, 505, 508, 509, 519 ]
11
+ use_energy_embed: false
12
+ test_num: 523
13
+ valid_num: 348
NeuralSeq/configs/tts/lj/fs2.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ base_config:
2
+ - configs/tts/fs2.yaml
3
+ - configs/tts/lj/base_text2mel.yaml
NeuralSeq/configs/tts/lj/hifigan.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ base_config:
2
+ - configs/tts/hifigan.yaml
3
+ - configs/tts/lj/base_mel2wav.yaml
NeuralSeq/configs/tts/lj/pwg.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ base_config:
2
+ - configs/tts/pwg.yaml
3
+ - configs/tts/lj/base_mel2wav.yaml
NeuralSeq/configs/tts/pwg.yaml ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_config: configs/tts/base.yaml
2
+ task_cls: tasks.vocoder.pwg.PwgTask
3
+
4
+ binarization_args:
5
+ with_wav: true
6
+ with_spk_embed: false
7
+ with_align: false
8
+ test_input_dir: ''
9
+
10
+ ###########
11
+ # train and eval
12
+ ###########
13
+ max_samples: 25600
14
+ max_sentences: 5
15
+ max_eval_sentences: 1
16
+ max_updates: 1000000
17
+ val_check_interval: 2000
18
+
19
+
20
+ ###########################################################
21
+ # FEATURE EXTRACTION SETTING #
22
+ ###########################################################
23
+ sampling_rate: 22050 # Sampling rate.
24
+ fft_size: 1024 # FFT size.
25
+ hop_size: 256 # Hop size.
26
+ win_length: null # Window length.
27
+ # If set to null, it will be the same as fft_size.
28
+ window: "hann" # Window function.
29
+ num_mels: 80 # Number of mel basis.
30
+ fmin: 80 # Minimum freq in mel basis calculation.
31
+ fmax: 7600 # Maximum frequency in mel basis calculation.
32
+ format: "hdf5" # Feature file format. "npy" or "hdf5" is supported.
33
+
34
+ ###########################################################
35
+ # GENERATOR NETWORK ARCHITECTURE SETTING #
36
+ ###########################################################
37
+ generator_params:
38
+ in_channels: 1 # Number of input channels.
39
+ out_channels: 1 # Number of output channels.
40
+ kernel_size: 3 # Kernel size of dilated convolution.
41
+ layers: 30 # Number of residual block layers.
42
+ stacks: 3 # Number of stacks i.e., dilation cycles.
43
+ residual_channels: 64 # Number of channels in residual conv.
44
+ gate_channels: 128 # Number of channels in gated conv.
45
+ skip_channels: 64 # Number of channels in skip conv.
46
+ aux_channels: 80 # Number of channels for auxiliary feature conv.
47
+ # Must be the same as num_mels.
48
+ aux_context_window: 2 # Context window size for auxiliary feature.
49
+ # If set to 2, previous 2 and future 2 frames will be considered.
50
+ dropout: 0.0 # Dropout rate. 0.0 means no dropout applied.
51
+ use_weight_norm: true # Whether to use weight norm.
52
+ # If set to true, it will be applied to all of the conv layers.
53
+ upsample_net: "ConvInUpsampleNetwork" # Upsampling network architecture.
54
+ upsample_params: # Upsampling network parameters.
55
+ upsample_scales: [4, 4, 4, 4] # Upsampling scales. Prodcut of these must be the same as hop size.
56
+ use_pitch_embed: false
57
+
58
+ ###########################################################
59
+ # DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
60
+ ###########################################################
61
+ discriminator_params:
62
+ in_channels: 1 # Number of input channels.
63
+ out_channels: 1 # Number of output channels.
64
+ kernel_size: 3 # Number of output channels.
65
+ layers: 10 # Number of conv layers.
66
+ conv_channels: 64 # Number of chnn layers.
67
+ bias: true # Whether to use bias parameter in conv.
68
+ use_weight_norm: true # Whether to use weight norm.
69
+ # If set to true, it will be applied to all of the conv layers.
70
+ nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv.
71
+ nonlinear_activation_params: # Nonlinear function parameters
72
+ negative_slope: 0.2 # Alpha in LeakyReLU.
73
+
74
+ ###########################################################
75
+ # STFT LOSS SETTING #
76
+ ###########################################################
77
+ stft_loss_params:
78
+ fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss.
79
+ hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss
80
+ win_lengths: [600, 1200, 240] # List of window length for STFT-based loss.
81
+ window: "hann_window" # Window function for STFT-based loss
82
+ use_mel_loss: false
83
+
84
+ ###########################################################
85
+ # ADVERSARIAL LOSS SETTING #
86
+ ###########################################################
87
+ lambda_adv: 4.0 # Loss balancing coefficient.
88
+
89
+ ###########################################################
90
+ # OPTIMIZER & SCHEDULER SETTING #
91
+ ###########################################################
92
+ generator_optimizer_params:
93
+ lr: 0.0001 # Generator's learning rate.
94
+ eps: 1.0e-6 # Generator's epsilon.
95
+ weight_decay: 0.0 # Generator's weight decay coefficient.
96
+ generator_scheduler_params:
97
+ step_size: 200000 # Generator's scheduler step size.
98
+ gamma: 0.5 # Generator's scheduler gamma.
99
+ # At each step size, lr will be multiplied by this parameter.
100
+ generator_grad_norm: 10 # Generator's gradient norm.
101
+ discriminator_optimizer_params:
102
+ lr: 0.00005 # Discriminator's learning rate.
103
+ eps: 1.0e-6 # Discriminator's epsilon.
104
+ weight_decay: 0.0 # Discriminator's weight decay coefficient.
105
+ discriminator_scheduler_params:
106
+ step_size: 200000 # Discriminator's scheduler step size.
107
+ gamma: 0.5 # Discriminator's scheduler gamma.
108
+ # At each step size, lr will be multiplied by this parameter.
109
+ discriminator_grad_norm: 1 # Discriminator's gradient norm.
110
+ disc_start_steps: 40000 # Number of steps to start to train discriminator.
NeuralSeq/data_gen/tts/__pycache__/base_binarizer.cpython-38.pyc ADDED
Binary file (8.23 kB). View file
 
NeuralSeq/data_gen/tts/__pycache__/base_binarizer_emotion.cpython-38.pyc ADDED
Binary file (13.3 kB). View file
 
NeuralSeq/data_gen/tts/__pycache__/base_preprocess.cpython-38.pyc ADDED
Binary file (11.1 kB). View file
 
NeuralSeq/data_gen/tts/__pycache__/data_gen_utils.cpython-37.pyc ADDED
Binary file (11 kB). View file
 
NeuralSeq/data_gen/tts/__pycache__/data_gen_utils.cpython-38.pyc ADDED
Binary file (11 kB). View file
 
NeuralSeq/data_gen/tts/base_binarizer.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ["OMP_NUM_THREADS"] = "1"
3
+
4
+ from utils.multiprocess_utils import chunked_multiprocess_run
5
+ import random
6
+ import traceback
7
+ import json
8
+ from resemblyzer import VoiceEncoder
9
+ from tqdm import tqdm
10
+ from data_gen.tts.data_gen_utils import get_mel2ph, get_pitch, build_phone_encoder
11
+ from utils.hparams import set_hparams, hparams
12
+ import numpy as np
13
+ from utils.indexed_datasets import IndexedDatasetBuilder
14
+ from vocoders.base_vocoder import VOCODERS
15
+ import pandas as pd
16
+
17
+
18
+ class BinarizationError(Exception):
19
+ pass
20
+
21
+
22
+ class BaseBinarizer:
23
+ def __init__(self, processed_data_dir=None):
24
+ if processed_data_dir is None:
25
+ processed_data_dir = hparams['processed_data_dir']
26
+ self.processed_data_dirs = processed_data_dir.split(",")
27
+ self.binarization_args = hparams['binarization_args']
28
+ self.pre_align_args = hparams['pre_align_args']
29
+ self.forced_align = self.pre_align_args['forced_align']
30
+ tg_dir = None
31
+ if self.forced_align == 'mfa':
32
+ tg_dir = 'mfa_outputs'
33
+ if self.forced_align == 'kaldi':
34
+ tg_dir = 'kaldi_outputs'
35
+ self.item2txt = {}
36
+ self.item2ph = {}
37
+ self.item2wavfn = {}
38
+ self.item2tgfn = {}
39
+ self.item2spk = {}
40
+ for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
41
+ self.meta_df = pd.read_csv(f"{processed_data_dir}/metadata_phone.csv", dtype=str)
42
+ for r_idx, r in self.meta_df.iterrows():
43
+ item_name = raw_item_name = r['item_name']
44
+ if len(self.processed_data_dirs) > 1:
45
+ item_name = f'ds{ds_id}_{item_name}'
46
+ self.item2txt[item_name] = r['txt']
47
+ self.item2ph[item_name] = r['ph']
48
+ self.item2wavfn[item_name] = os.path.join(hparams['raw_data_dir'], 'wavs', os.path.basename(r['wav_fn']).split('_')[1])
49
+ self.item2spk[item_name] = r.get('spk', 'SPK1')
50
+ if len(self.processed_data_dirs) > 1:
51
+ self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
52
+ if tg_dir is not None:
53
+ self.item2tgfn[item_name] = f"{processed_data_dir}/{tg_dir}/{raw_item_name}.TextGrid"
54
+ self.item_names = sorted(list(self.item2txt.keys()))
55
+ if self.binarization_args['shuffle']:
56
+ random.seed(1234)
57
+ random.shuffle(self.item_names)
58
+
59
+ @property
60
+ def train_item_names(self):
61
+ return self.item_names[hparams['test_num']+hparams['valid_num']:]
62
+
63
+ @property
64
+ def valid_item_names(self):
65
+ return self.item_names[0: hparams['test_num']+hparams['valid_num']] #
66
+
67
+ @property
68
+ def test_item_names(self):
69
+ return self.item_names[0: hparams['test_num']] # Audios for MOS testing are in 'test_ids'
70
+
71
+ def build_spk_map(self):
72
+ spk_map = set()
73
+ for item_name in self.item_names:
74
+ spk_name = self.item2spk[item_name]
75
+ spk_map.add(spk_name)
76
+ spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))}
77
+ assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
78
+ return spk_map
79
+
80
+ def item_name2spk_id(self, item_name):
81
+ return self.spk_map[self.item2spk[item_name]]
82
+
83
+ def _phone_encoder(self):
84
+ ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
85
+ ph_set = []
86
+ if hparams['reset_phone_dict'] or not os.path.exists(ph_set_fn):
87
+ for processed_data_dir in self.processed_data_dirs:
88
+ ph_set += [x.split(' ')[0] for x in open(f'{processed_data_dir}/dict.txt').readlines()]
89
+ ph_set = sorted(set(ph_set))
90
+ json.dump(ph_set, open(ph_set_fn, 'w'))
91
+ else:
92
+ ph_set = json.load(open(ph_set_fn, 'r'))
93
+ print("| phone set: ", ph_set)
94
+ return build_phone_encoder(hparams['binary_data_dir'])
95
+
96
+ def meta_data(self, prefix):
97
+ if prefix == 'valid':
98
+ item_names = self.valid_item_names
99
+ elif prefix == 'test':
100
+ item_names = self.test_item_names
101
+ else:
102
+ item_names = self.train_item_names
103
+ for item_name in item_names:
104
+ ph = self.item2ph[item_name]
105
+ txt = self.item2txt[item_name]
106
+ tg_fn = self.item2tgfn.get(item_name)
107
+ wav_fn = self.item2wavfn[item_name]
108
+ spk_id = self.item_name2spk_id(item_name)
109
+ yield item_name, ph, txt, tg_fn, wav_fn, spk_id
110
+
111
+ def process(self):
112
+ os.makedirs(hparams['binary_data_dir'], exist_ok=True)
113
+ self.spk_map = self.build_spk_map()
114
+ print("| spk_map: ", self.spk_map)
115
+ spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
116
+ json.dump(self.spk_map, open(spk_map_fn, 'w'))
117
+
118
+ self.phone_encoder = self._phone_encoder()
119
+ self.process_data('valid')
120
+ self.process_data('test')
121
+ self.process_data('train')
122
+
123
+ def process_data(self, prefix):
124
+ data_dir = hparams['binary_data_dir']
125
+ args = []
126
+ builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
127
+ lengths = []
128
+ f0s = []
129
+ total_sec = 0
130
+ if self.binarization_args['with_spk_embed']:
131
+ voice_encoder = VoiceEncoder().cuda()
132
+
133
+ meta_data = list(self.meta_data(prefix))
134
+ for m in meta_data:
135
+ args.append(list(m) + [self.phone_encoder, self.binarization_args])
136
+ num_workers = int(os.getenv('N_PROC', os.cpu_count() // 3))
137
+ for f_id, (_, item) in enumerate(
138
+ zip(tqdm(meta_data), chunked_multiprocess_run(self.process_item, args, num_workers=num_workers))):
139
+ if item is None:
140
+ continue
141
+ item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
142
+ if self.binarization_args['with_spk_embed'] else None
143
+ if not self.binarization_args['with_wav'] and 'wav' in item:
144
+ print("del wav")
145
+ del item['wav']
146
+ builder.add_item(item)
147
+ lengths.append(item['len'])
148
+ total_sec += item['sec']
149
+ if item.get('f0') is not None:
150
+ f0s.append(item['f0'])
151
+ builder.finalize()
152
+ np.save(f'{data_dir}/{prefix}_lengths.npy', lengths)
153
+ if len(f0s) > 0:
154
+ f0s = np.concatenate(f0s, 0)
155
+ f0s = f0s[f0s != 0]
156
+ np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()])
157
+ print(f"| {prefix} total duration: {total_sec:.3f}s")
158
+
159
+ @classmethod
160
+ def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
161
+ if hparams['vocoder'] in VOCODERS:
162
+ wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
163
+ else:
164
+ wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
165
+ res = {
166
+ 'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
167
+ 'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
168
+ }
169
+ try:
170
+ if binarization_args['with_f0']:
171
+ cls.get_pitch(wav, mel, res)
172
+ if binarization_args['with_f0cwt']:
173
+ cls.get_f0cwt(res['f0'], res)
174
+ if binarization_args['with_txt']:
175
+ try:
176
+ phone_encoded = res['phone'] = encoder.encode(ph)
177
+ except:
178
+ traceback.print_exc()
179
+ raise BinarizationError(f"Empty phoneme")
180
+ if binarization_args['with_align']:
181
+ cls.get_align(tg_fn, ph, mel, phone_encoded, res)
182
+ except BinarizationError as e:
183
+ print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
184
+ return None
185
+ return res
186
+
187
+ @staticmethod
188
+ def get_align(tg_fn, ph, mel, phone_encoded, res):
189
+ if tg_fn is not None and os.path.exists(tg_fn):
190
+ mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams)
191
+ else:
192
+ raise BinarizationError(f"Align not found")
193
+ if mel2ph.max() - 1 >= len(phone_encoded):
194
+ raise BinarizationError(
195
+ f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}")
196
+ res['mel2ph'] = mel2ph
197
+ res['dur'] = dur
198
+
199
+ @staticmethod
200
+ def get_pitch(wav, mel, res):
201
+ f0, pitch_coarse = get_pitch(wav, mel, hparams)
202
+ if sum(f0) == 0:
203
+ raise BinarizationError("Empty f0")
204
+ res['f0'] = f0
205
+ res['pitch'] = pitch_coarse
206
+
207
+ @staticmethod
208
+ def get_f0cwt(f0, res):
209
+ from utils.cwt import get_cont_lf0, get_lf0_cwt
210
+ uv, cont_lf0_lpf = get_cont_lf0(f0)
211
+ logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
212
+ cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
213
+ Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm)
214
+ if np.any(np.isnan(Wavelet_lf0)):
215
+ raise BinarizationError("NaN CWT")
216
+ res['cwt_spec'] = Wavelet_lf0
217
+ res['cwt_scales'] = scales
218
+ res['f0_mean'] = logf0s_mean_org
219
+ res['f0_std'] = logf0s_std_org
220
+
221
+
222
+ if __name__ == "__main__":
223
+ set_hparams()
224
+ BaseBinarizer().process()
NeuralSeq/data_gen/tts/base_binarizer_emotion.py ADDED
@@ -0,0 +1,352 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.environ["OMP_NUM_THREADS"] = "1"
4
+ import torch
5
+ from collections import Counter
6
+ from utils.text_encoder import TokenTextEncoder
7
+ from data_gen.tts.emotion import inference as EmotionEncoder
8
+ from data_gen.tts.emotion.inference import embed_utterance as Embed_utterance
9
+ from data_gen.tts.emotion.inference import preprocess_wav
10
+ from utils.multiprocess_utils import chunked_multiprocess_run
11
+ import random
12
+ import traceback
13
+ import json
14
+ from resemblyzer import VoiceEncoder
15
+ from tqdm import tqdm
16
+ from data_gen.tts.data_gen_utils import get_mel2ph, get_pitch, build_phone_encoder, is_sil_phoneme
17
+ from utils.hparams import hparams, set_hparams
18
+ import numpy as np
19
+ from utils.indexed_datasets import IndexedDatasetBuilder
20
+ from vocoders.base_vocoder import get_vocoder_cls
21
+ import pandas as pd
22
+
23
+
24
+ class BinarizationError(Exception):
25
+ pass
26
+
27
+
28
+ class EmotionBinarizer:
29
+ def __init__(self, processed_data_dir=None):
30
+ if processed_data_dir is None:
31
+ processed_data_dir = hparams['processed_data_dir']
32
+ self.processed_data_dirs = processed_data_dir.split(",")
33
+ self.binarization_args = hparams['binarization_args']
34
+ self.pre_align_args = hparams['pre_align_args']
35
+ self.item2txt = {}
36
+ self.item2ph = {}
37
+ self.item2wavfn = {}
38
+ self.item2tgfn = {}
39
+ self.item2spk = {}
40
+ self.item2emo = {}
41
+
42
+ def load_meta_data(self):
43
+ for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
44
+ self.meta_df = pd.read_csv(f"{processed_data_dir}/metadata_phone.csv", dtype=str)
45
+ for r_idx, r in tqdm(self.meta_df.iterrows(), desc='Loading meta data.'):
46
+ item_name = raw_item_name = r['item_name']
47
+ if len(self.processed_data_dirs) > 1:
48
+ item_name = f'ds{ds_id}_{item_name}'
49
+ self.item2txt[item_name] = r['txt']
50
+ self.item2ph[item_name] = r['ph']
51
+ self.item2wavfn[item_name] = r['wav_fn']
52
+ self.item2spk[item_name] = r.get('spk_name', 'SPK1') \
53
+ if self.binarization_args['with_spk_id'] else 'SPK1'
54
+ if len(self.processed_data_dirs) > 1:
55
+ self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
56
+ self.item2tgfn[item_name] = f"{processed_data_dir}/mfa_outputs/{raw_item_name}.TextGrid"
57
+ self.item2emo[item_name] = r.get('others', '"Neutral"')
58
+ self.item_names = sorted(list(self.item2txt.keys()))
59
+ if self.binarization_args['shuffle']:
60
+ random.seed(1234)
61
+ random.shuffle(self.item_names)
62
+
63
+ @property
64
+ def train_item_names(self):
65
+ return self.item_names[hparams['test_num']:]
66
+
67
+ @property
68
+ def valid_item_names(self):
69
+ return self.item_names[:hparams['test_num']]
70
+
71
+ @property
72
+ def test_item_names(self):
73
+ return self.valid_item_names
74
+
75
+ def build_spk_map(self):
76
+ spk_map = set()
77
+ for item_name in self.item_names:
78
+ spk_name = self.item2spk[item_name]
79
+ spk_map.add(spk_name)
80
+ spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))}
81
+ print("| #Spk: ", len(spk_map))
82
+ assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
83
+ return spk_map
84
+
85
+ def build_emo_map(self):
86
+ emo_map = set()
87
+ for item_name in self.item_names:
88
+ emo_name = self.item2emo[item_name]
89
+ emo_map.add(emo_name)
90
+ emo_map = {x: i for i, x in enumerate(sorted(list(emo_map)))}
91
+ print("| #Emo: ", len(emo_map))
92
+ return emo_map
93
+
94
+ def item_name2spk_id(self, item_name):
95
+ return self.spk_map[self.item2spk[item_name]]
96
+
97
+ def item_name2emo_id(self, item_name):
98
+ return self.emo_map[self.item2emo[item_name]]
99
+
100
+ def _phone_encoder(self):
101
+ ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
102
+ ph_set = []
103
+ if self.binarization_args['reset_phone_dict'] or not os.path.exists(ph_set_fn):
104
+ for ph_sent in self.item2ph.values():
105
+ ph_set += ph_sent.split(' ')
106
+ ph_set = sorted(set(ph_set))
107
+ json.dump(ph_set, open(ph_set_fn, 'w'))
108
+ print("| Build phone set: ", ph_set)
109
+ else:
110
+ ph_set = json.load(open(ph_set_fn, 'r'))
111
+ print("| Load phone set: ", ph_set)
112
+ return build_phone_encoder(hparams['binary_data_dir'])
113
+
114
+ def _word_encoder(self):
115
+ fn = f"{hparams['binary_data_dir']}/word_set.json"
116
+ word_set = []
117
+ if self.binarization_args['reset_word_dict']:
118
+ for word_sent in self.item2txt.values():
119
+ word_set += [x for x in word_sent.split(' ') if x != '']
120
+ word_set = Counter(word_set)
121
+ total_words = sum(word_set.values())
122
+ word_set = word_set.most_common(hparams['word_size'])
123
+ num_unk_words = total_words - sum([x[1] for x in word_set])
124
+ word_set = [x[0] for x in word_set]
125
+ json.dump(word_set, open(fn, 'w'))
126
+ print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words},"
127
+ f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.")
128
+ else:
129
+ word_set = json.load(open(fn, 'r'))
130
+ print("| Load word set. Size: ", len(word_set), word_set[:10])
131
+ return TokenTextEncoder(None, vocab_list=word_set, replace_oov='<UNK>')
132
+
133
+ def meta_data(self, prefix):
134
+ if prefix == 'valid':
135
+ item_names = self.valid_item_names
136
+ elif prefix == 'test':
137
+ item_names = self.test_item_names
138
+ else:
139
+ item_names = self.train_item_names
140
+ for item_name in item_names:
141
+ ph = self.item2ph[item_name]
142
+ txt = self.item2txt[item_name]
143
+ tg_fn = self.item2tgfn.get(item_name)
144
+ wav_fn = self.item2wavfn[item_name]
145
+ spk_id = self.item_name2spk_id(item_name)
146
+ emotion = self.item_name2emo_id(item_name)
147
+ yield item_name, ph, txt, tg_fn, wav_fn, spk_id, emotion
148
+
149
+ def process(self):
150
+ self.load_meta_data()
151
+ os.makedirs(hparams['binary_data_dir'], exist_ok=True)
152
+ self.spk_map = self.build_spk_map()
153
+ print("| spk_map: ", self.spk_map)
154
+ spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
155
+ json.dump(self.spk_map, open(spk_map_fn, 'w'))
156
+
157
+ self.emo_map = self.build_emo_map()
158
+ print("| emo_map: ", self.emo_map)
159
+ emo_map_fn = f"{hparams['binary_data_dir']}/emo_map.json"
160
+ json.dump(self.emo_map, open(emo_map_fn, 'w'))
161
+
162
+ self.phone_encoder = self._phone_encoder()
163
+ self.word_encoder = None
164
+ EmotionEncoder.load_model(hparams['emotion_encoder_path'])
165
+
166
+ if self.binarization_args['with_word']:
167
+ self.word_encoder = self._word_encoder()
168
+ self.process_data('valid')
169
+ self.process_data('test')
170
+ self.process_data('train')
171
+
172
+ def process_data(self, prefix):
173
+ data_dir = hparams['binary_data_dir']
174
+ args = []
175
+ builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
176
+ ph_lengths = []
177
+ mel_lengths = []
178
+ f0s = []
179
+ total_sec = 0
180
+ if self.binarization_args['with_spk_embed']:
181
+ voice_encoder = VoiceEncoder().cuda()
182
+
183
+ meta_data = list(self.meta_data(prefix))
184
+ for m in meta_data:
185
+ args.append(list(m) + [(self.phone_encoder, self.word_encoder), self.binarization_args])
186
+ num_workers = self.num_workers
187
+ for f_id, (_, item) in enumerate(
188
+ zip(tqdm(meta_data), chunked_multiprocess_run(self.process_item, args, num_workers=num_workers))):
189
+ if item is None:
190
+ continue
191
+ item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
192
+ if self.binarization_args['with_spk_embed'] else None
193
+ processed_wav = preprocess_wav(item['wav_fn'])
194
+ item['emo_embed'] = Embed_utterance(processed_wav)
195
+ if not self.binarization_args['with_wav'] and 'wav' in item:
196
+ del item['wav']
197
+ builder.add_item(item)
198
+ mel_lengths.append(item['len'])
199
+ if 'ph_len' in item:
200
+ ph_lengths.append(item['ph_len'])
201
+ total_sec += item['sec']
202
+ if item.get('f0') is not None:
203
+ f0s.append(item['f0'])
204
+ builder.finalize()
205
+ np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths)
206
+ if len(ph_lengths) > 0:
207
+ np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths)
208
+ if len(f0s) > 0:
209
+ f0s = np.concatenate(f0s, 0)
210
+ f0s = f0s[f0s != 0]
211
+ np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()])
212
+ print(f"| {prefix} total duration: {total_sec:.3f}s")
213
+
214
+ @classmethod
215
+ def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, emotion, encoder, binarization_args):
216
+ res = {'item_name': item_name, 'txt': txt, 'ph': ph, 'wav_fn': wav_fn, 'spk_id': spk_id, 'emotion': emotion}
217
+ if binarization_args['with_linear']:
218
+ wav, mel, linear_stft = get_vocoder_cls(hparams).wav2spec(wav_fn) # , return_linear=True
219
+ res['linear'] = linear_stft
220
+ else:
221
+ wav, mel = get_vocoder_cls(hparams).wav2spec(wav_fn)
222
+ wav = wav.astype(np.float16)
223
+ res.update({'mel': mel, 'wav': wav,
224
+ 'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]})
225
+ try:
226
+ if binarization_args['with_f0']:
227
+ cls.get_pitch(res)
228
+ if binarization_args['with_f0cwt']:
229
+ cls.get_f0cwt(res)
230
+ if binarization_args['with_txt']:
231
+ ph_encoder, word_encoder = encoder
232
+ try:
233
+ res['phone'] = ph_encoder.encode(ph)
234
+ res['ph_len'] = len(res['phone'])
235
+ except:
236
+ traceback.print_exc()
237
+ raise BinarizationError(f"Empty phoneme")
238
+ if binarization_args['with_align']:
239
+ cls.get_align(tg_fn, res)
240
+ if binarization_args['trim_eos_bos']:
241
+ bos_dur = res['dur'][0]
242
+ eos_dur = res['dur'][-1]
243
+ res['mel'] = mel[bos_dur:-eos_dur]
244
+ res['f0'] = res['f0'][bos_dur:-eos_dur]
245
+ res['pitch'] = res['pitch'][bos_dur:-eos_dur]
246
+ res['mel2ph'] = res['mel2ph'][bos_dur:-eos_dur]
247
+ res['wav'] = wav[bos_dur * hparams['hop_size']:-eos_dur * hparams['hop_size']]
248
+ res['dur'] = res['dur'][1:-1]
249
+ res['len'] = res['mel'].shape[0]
250
+ if binarization_args['with_word']:
251
+ cls.get_word(res, word_encoder)
252
+ except BinarizationError as e:
253
+ print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
254
+ return None
255
+ except Exception as e:
256
+ traceback.print_exc()
257
+ print(f"| Skip item. item_name: {item_name}, wav_fn: {wav_fn}")
258
+ return None
259
+ return res
260
+
261
+ @staticmethod
262
+ def get_align(tg_fn, res):
263
+ ph = res['ph']
264
+ mel = res['mel']
265
+ phone_encoded = res['phone']
266
+ if tg_fn is not None and os.path.exists(tg_fn):
267
+ mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams)
268
+ else:
269
+ raise BinarizationError(f"Align not found")
270
+ if mel2ph.max() - 1 >= len(phone_encoded):
271
+ raise BinarizationError(
272
+ f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}")
273
+ res['mel2ph'] = mel2ph
274
+ res['dur'] = dur
275
+
276
+ @staticmethod
277
+ def get_pitch(res):
278
+ wav, mel = res['wav'], res['mel']
279
+ f0, pitch_coarse = get_pitch(wav, mel, hparams)
280
+ if sum(f0) == 0:
281
+ raise BinarizationError("Empty f0")
282
+ res['f0'] = f0
283
+ res['pitch'] = pitch_coarse
284
+
285
+ @staticmethod
286
+ def get_f0cwt(res):
287
+ from utils.cwt import get_cont_lf0, get_lf0_cwt
288
+ f0 = res['f0']
289
+ uv, cont_lf0_lpf = get_cont_lf0(f0)
290
+ logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
291
+ cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
292
+ Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm)
293
+ if np.any(np.isnan(Wavelet_lf0)):
294
+ raise BinarizationError("NaN CWT")
295
+ res['cwt_spec'] = Wavelet_lf0
296
+ res['cwt_scales'] = scales
297
+ res['f0_mean'] = logf0s_mean_org
298
+ res['f0_std'] = logf0s_std_org
299
+
300
+ @staticmethod
301
+ def get_word(res, word_encoder):
302
+ ph_split = res['ph'].split(" ")
303
+ # ph side mapping to word
304
+ ph_words = [] # ['<BOS>', 'N_AW1_', ',', 'AE1_Z_|', 'AO1_L_|', 'B_UH1_K_S_|', 'N_AA1_T_|', ....]
305
+ ph2word = np.zeros([len(ph_split)], dtype=int)
306
+ last_ph_idx_for_word = [] # [2, 11, ...]
307
+ for i, ph in enumerate(ph_split):
308
+ if ph == '|':
309
+ last_ph_idx_for_word.append(i)
310
+ elif not ph[0].isalnum():
311
+ if ph not in ['<BOS>']:
312
+ last_ph_idx_for_word.append(i - 1)
313
+ last_ph_idx_for_word.append(i)
314
+ start_ph_idx_for_word = [0] + [i + 1 for i in last_ph_idx_for_word[:-1]]
315
+ for i, (s_w, e_w) in enumerate(zip(start_ph_idx_for_word, last_ph_idx_for_word)):
316
+ ph_words.append(ph_split[s_w:e_w + 1])
317
+ ph2word[s_w:e_w + 1] = i
318
+ ph2word = ph2word.tolist()
319
+ ph_words = ["_".join(w) for w in ph_words]
320
+
321
+ # mel side mapping to word
322
+ mel2word = []
323
+ dur_word = [0 for _ in range(len(ph_words))]
324
+ for i, m2p in enumerate(res['mel2ph']):
325
+ word_idx = ph2word[m2p - 1]
326
+ mel2word.append(ph2word[m2p - 1])
327
+ dur_word[word_idx] += 1
328
+ ph2word = [x + 1 for x in ph2word] # 0预留给padding
329
+ mel2word = [x + 1 for x in mel2word] # 0预留给padding
330
+ res['ph_words'] = ph_words # [T_word]
331
+ res['ph2word'] = ph2word # [T_ph]
332
+ res['mel2word'] = mel2word # [T_mel]
333
+ res['dur_word'] = dur_word # [T_word]
334
+ words = [x for x in res['txt'].split(" ") if x != '']
335
+ while len(words) > 0 and is_sil_phoneme(words[0]):
336
+ words = words[1:]
337
+ while len(words) > 0 and is_sil_phoneme(words[-1]):
338
+ words = words[:-1]
339
+ words = ['<BOS>'] + words + ['<EOS>']
340
+ word_tokens = word_encoder.encode(" ".join(words))
341
+ res['words'] = words
342
+ res['word_tokens'] = word_tokens
343
+ assert len(words) == len(ph_words), [words, ph_words]
344
+
345
+ @property
346
+ def num_workers(self):
347
+ return int(os.getenv('N_PROC', hparams.get('N_PROC', os.cpu_count())))
348
+
349
+
350
+ if __name__ == "__main__":
351
+ set_hparams()
352
+ EmotionBinarizer().process()
NeuralSeq/data_gen/tts/base_preprocess.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import random
4
+ import re
5
+ import traceback
6
+ from collections import Counter
7
+ from functools import partial
8
+ import pandas as pd
9
+ import librosa
10
+ from tqdm import tqdm
11
+ from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls
12
+ from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls
13
+ from utils.hparams import hparams
14
+ from utils.multiprocess_utils import multiprocess_run_tqdm
15
+ from utils.os_utils import link_file, move_file, remove_file
16
+ from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder
17
+
18
+
19
+ class BasePreprocessor:
20
+ def __init__(self):
21
+ self.preprocess_args = hparams['preprocess_args']
22
+ txt_processor = self.preprocess_args['txt_processor']
23
+ self.txt_processor = get_txt_processor_cls(txt_processor)
24
+ self.raw_data_dir = hparams['raw_data_dir']
25
+ self.processed_dir = hparams['processed_data_dir']
26
+ self.spk_map_fn = f"{self.processed_dir}/spk_map.json"
27
+
28
+ def meta_data(self):
29
+ """
30
+ :return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func}
31
+ """
32
+ raise NotImplementedError
33
+
34
+ def process(self):
35
+ processed_dir = self.processed_dir
36
+ wav_processed_tmp_dir = f'{processed_dir}/processed_tmp'
37
+ remove_file(wav_processed_tmp_dir)
38
+ os.makedirs(wav_processed_tmp_dir, exist_ok=True)
39
+ wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}'
40
+ remove_file(wav_processed_dir)
41
+ os.makedirs(wav_processed_dir, exist_ok=True)
42
+
43
+ meta_data = list(tqdm(self.meta_data(), desc='Load meta data'))
44
+ item_names = [d['item_name'] for d in meta_data]
45
+ assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.'
46
+
47
+ # preprocess data
48
+ phone_list = []
49
+ word_list = []
50
+ spk_names = set()
51
+ process_item = partial(self.preprocess_first_pass,
52
+ txt_processor=self.txt_processor,
53
+ wav_processed_dir=wav_processed_dir,
54
+ wav_processed_tmp=wav_processed_tmp_dir,
55
+ preprocess_args=self.preprocess_args)
56
+ items = []
57
+ args = [{
58
+ 'item_name': item_raw['item_name'],
59
+ 'txt_raw': item_raw['txt'],
60
+ 'wav_fn': item_raw['wav_fn'],
61
+ 'txt_loader': item_raw.get('txt_loader'),
62
+ 'others': item_raw.get('others', None)
63
+ } for item_raw in meta_data]
64
+ for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')):
65
+ if item is not None:
66
+ item_.update(item)
67
+ item = item_
68
+ if 'txt_loader' in item:
69
+ del item['txt_loader']
70
+ item['id'] = item_id
71
+ item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>')
72
+ item['others'] = item.get('others', None)
73
+ phone_list += item['ph'].split(" ")
74
+ word_list += item['word'].split(" ")
75
+ spk_names.add(item['spk_name'])
76
+ items.append(item)
77
+
78
+ # add encoded tokens
79
+ ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list)
80
+ spk_map = self.build_spk_map(spk_names)
81
+ args = [{
82
+ 'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'],
83
+ 'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map
84
+ } for item in items]
85
+ for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'):
86
+ items[idx].update(item_new_kv)
87
+
88
+ # build mfa data
89
+ if self.preprocess_args['use_mfa']:
90
+ mfa_dict = set()
91
+ mfa_input_dir = f'{processed_dir}/mfa_inputs'
92
+ remove_file(mfa_input_dir)
93
+ # group MFA inputs for better parallelism
94
+ mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))]
95
+ if self.preprocess_args['mfa_group_shuffle']:
96
+ random.seed(hparams['seed'])
97
+ random.shuffle(mfa_groups)
98
+ args = [{
99
+ 'item': item, 'mfa_input_dir': mfa_input_dir,
100
+ 'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir,
101
+ 'preprocess_args': self.preprocess_args
102
+ } for item, mfa_group in zip(items, mfa_groups)]
103
+ for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm(
104
+ self.build_mfa_inputs, args, desc='Build MFA data'):
105
+ items[i]['wav_align_fn'] = new_wav_align_fn
106
+ for w in ph_gb_word_nosil.split(" "):
107
+ mfa_dict.add(f"{w} {w.replace('_', ' ')}")
108
+ mfa_dict = sorted(mfa_dict)
109
+ with open(f'{processed_dir}/mfa_dict.txt', 'w') as f:
110
+ f.writelines([f'{l}\n' for l in mfa_dict])
111
+ with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f:
112
+ f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1)))
113
+ remove_file(wav_processed_tmp_dir)
114
+
115
+
116
+ @classmethod
117
+ def preprocess_first_pass(cls, item_name, txt_raw, txt_processor,
118
+ wav_fn, wav_processed_dir, wav_processed_tmp,
119
+ preprocess_args, txt_loader=None, others=None):
120
+ try:
121
+ if txt_loader is not None:
122
+ txt_raw = txt_loader(txt_raw)
123
+ ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args)
124
+ wav_fn, wav_align_fn = cls.process_wav(
125
+ item_name, wav_fn,
126
+ hparams['processed_data_dir'],
127
+ wav_processed_tmp, preprocess_args)
128
+
129
+ # wav for binarization
130
+ ext = os.path.splitext(wav_fn)[1]
131
+ os.makedirs(wav_processed_dir, exist_ok=True)
132
+ new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}"
133
+ move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file
134
+ move_link_func(wav_fn, new_wav_fn)
135
+ return {
136
+ 'txt': txt, 'txt_raw': txt_raw, 'ph': ph,
137
+ 'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word,
138
+ 'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn,
139
+ 'others': others
140
+ }
141
+ except:
142
+ traceback.print_exc()
143
+ print(f"| Error is caught. item_name: {item_name}.")
144
+ return None
145
+
146
+ @staticmethod
147
+ def txt_to_ph(txt_processor, txt_raw, preprocess_args):
148
+ txt_struct, txt = txt_processor.process(txt_raw, preprocess_args)
149
+ ph = [p for w in txt_struct for p in w[1]]
150
+ ph_gb_word = ["_".join(w[1]) for w in txt_struct]
151
+ words = [w[0] for w in txt_struct]
152
+ # word_id=0 is reserved for padding
153
+ ph2word = [w_id + 1 for w_id, w in enumerate(txt_struct) for _ in range(len(w[1]))]
154
+ return " ".join(ph), txt, " ".join(words), ph2word, " ".join(ph_gb_word)
155
+
156
+ @staticmethod
157
+ def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args):
158
+ processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']]
159
+ processors = [k() for k in processors if k is not None]
160
+ if len(processors) >= 1:
161
+ sr_file = librosa.core.get_samplerate(wav_fn)
162
+ output_fn_for_align = None
163
+ ext = os.path.splitext(wav_fn)[1]
164
+ input_fn = f"{wav_processed_tmp}/{item_name}{ext}"
165
+ link_file(wav_fn, input_fn)
166
+ for p in processors:
167
+ outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args)
168
+ if len(outputs) == 3:
169
+ input_fn, sr, output_fn_for_align = outputs
170
+ else:
171
+ input_fn, sr = outputs
172
+ if output_fn_for_align is None:
173
+ return input_fn, input_fn
174
+ else:
175
+ return input_fn, output_fn_for_align
176
+ else:
177
+ return wav_fn, wav_fn
178
+
179
+ def _phone_encoder(self, ph_set):
180
+ ph_set_fn = f"{self.processed_dir}/phone_set.json"
181
+ if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn):
182
+ ph_set = sorted(set(ph_set))
183
+ json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False)
184
+ print("| Build phone set: ", ph_set)
185
+ else:
186
+ ph_set = json.load(open(ph_set_fn, 'r'))
187
+ print("| Load phone set: ", ph_set)
188
+ return build_token_encoder(ph_set_fn)
189
+
190
+ def _word_encoder(self, word_set):
191
+ word_set_fn = f"{self.processed_dir}/word_set.json"
192
+ if self.preprocess_args['reset_word_dict']:
193
+ word_set = Counter(word_set)
194
+ total_words = sum(word_set.values())
195
+ word_set = word_set.most_common(hparams['word_dict_size'])
196
+ num_unk_words = total_words - sum([x[1] for x in word_set])
197
+ word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set]
198
+ word_set = sorted(set(word_set))
199
+ json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False)
200
+ print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words},"
201
+ f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.")
202
+ else:
203
+ word_set = json.load(open(word_set_fn, 'r'))
204
+ print("| Load word set. Size: ", len(word_set), word_set[:10])
205
+ return build_token_encoder(word_set_fn)
206
+
207
+ @classmethod
208
+ def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map):
209
+ word_token = word_encoder.encode(word)
210
+ ph_token = ph_encoder.encode(ph)
211
+ spk_id = spk_map[spk_name]
212
+ return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id}
213
+
214
+ def build_spk_map(self, spk_names):
215
+ spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))}
216
+ assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
217
+ print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}")
218
+ json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False)
219
+ return spk_map
220
+
221
+ @classmethod
222
+ def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args):
223
+ item_name = item['item_name']
224
+ wav_align_fn = item['wav_align_fn']
225
+ ph_gb_word = item['ph_gb_word']
226
+ ext = os.path.splitext(wav_align_fn)[1]
227
+ mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}'
228
+ os.makedirs(mfa_input_group_dir, exist_ok=True)
229
+ new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}"
230
+ move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file
231
+ move_link_func(wav_align_fn, new_wav_align_fn)
232
+ ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)])
233
+ for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)])
234
+ with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt:
235
+ f_txt.write(ph_gb_word_nosil)
236
+ return ph_gb_word_nosil, new_wav_align_fn
237
+
238
+ def load_spk_map(self, base_dir):
239
+ spk_map_fn = f"{base_dir}/spk_map.json"
240
+ spk_map = json.load(open(spk_map_fn, 'r'))
241
+ return spk_map
242
+
243
+ def load_dict(self, base_dir):
244
+ ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json')
245
+ word_encoder = build_token_encoder(f'{base_dir}/word_set.json')
246
+ return ph_encoder, word_encoder
247
+
248
+ @property
249
+ def meta_csv_filename(self):
250
+ return 'metadata'
251
+
252
+ @property
253
+ def wav_processed_dirname(self):
254
+ return 'wav_processed'
NeuralSeq/data_gen/tts/binarizer_zh.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.environ["OMP_NUM_THREADS"] = "1"
4
+
5
+ from data_gen.tts.txt_processors.zh_g2pM import ALL_SHENMU
6
+ from data_gen.tts.base_binarizer import BaseBinarizer, BinarizationError
7
+ from data_gen.tts.data_gen_utils import get_mel2ph
8
+ from utils.hparams import set_hparams, hparams
9
+ import numpy as np
10
+
11
+
12
+ class ZhBinarizer(BaseBinarizer):
13
+ @staticmethod
14
+ def get_align(tg_fn, ph, mel, phone_encoded, res):
15
+ if tg_fn is not None and os.path.exists(tg_fn):
16
+ _, dur = get_mel2ph(tg_fn, ph, mel, hparams)
17
+ else:
18
+ raise BinarizationError(f"Align not found")
19
+ ph_list = ph.split(" ")
20
+ assert len(dur) == len(ph_list)
21
+ mel2ph = []
22
+ # 分隔符的时长分配给韵母
23
+ dur_cumsum = np.pad(np.cumsum(dur), [1, 0], mode='constant', constant_values=0)
24
+ for i in range(len(dur)):
25
+ p = ph_list[i]
26
+ if p[0] != '<' and not p[0].isalpha():
27
+ uv_ = res['f0'][dur_cumsum[i]:dur_cumsum[i + 1]] == 0
28
+ j = 0
29
+ while j < len(uv_) and not uv_[j]:
30
+ j += 1
31
+ dur[i - 1] += j
32
+ dur[i] -= j
33
+ if dur[i] < 100:
34
+ dur[i - 1] += dur[i]
35
+ dur[i] = 0
36
+ # 声母和韵母等长
37
+ for i in range(len(dur)):
38
+ p = ph_list[i]
39
+ if p in ALL_SHENMU:
40
+ p_next = ph_list[i + 1]
41
+ if not (dur[i] > 0 and p_next[0].isalpha() and p_next not in ALL_SHENMU):
42
+ print(f"assert dur[i] > 0 and p_next[0].isalpha() and p_next not in ALL_SHENMU, "
43
+ f"dur[i]: {dur[i]}, p: {p}, p_next: {p_next}.")
44
+ continue
45
+ total = dur[i + 1] + dur[i]
46
+ dur[i] = total // 2
47
+ dur[i + 1] = total - dur[i]
48
+ for i in range(len(dur)):
49
+ mel2ph += [i + 1] * dur[i]
50
+ mel2ph = np.array(mel2ph)
51
+ if mel2ph.max() - 1 >= len(phone_encoded):
52
+ raise BinarizationError(f"| Align does not match: {(mel2ph.max() - 1, len(phone_encoded))}")
53
+ res['mel2ph'] = mel2ph
54
+ res['dur'] = dur
55
+
56
+
57
+ if __name__ == "__main__":
58
+ set_hparams()
59
+ ZhBinarizer().process()
NeuralSeq/data_gen/tts/data_gen_utils.py ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+
3
+ warnings.filterwarnings("ignore")
4
+
5
+ import parselmouth
6
+ import os
7
+ import torch
8
+ from skimage.transform import resize
9
+ from utils.text_encoder import TokenTextEncoder
10
+ from utils.pitch_utils import f0_to_coarse
11
+ import struct
12
+ import webrtcvad
13
+ from scipy.ndimage.morphology import binary_dilation
14
+ import librosa
15
+ import numpy as np
16
+ from utils import audio
17
+ import pyloudnorm as pyln
18
+ import re
19
+ import json
20
+ from collections import OrderedDict
21
+
22
+ PUNCS = '!,.?;:'
23
+
24
+ int16_max = (2 ** 15) - 1
25
+
26
+
27
+ def trim_long_silences(path, sr=None, return_raw_wav=False, norm=True, vad_max_silence_length=12):
28
+ """
29
+ Ensures that segments without voice in the waveform remain no longer than a
30
+ threshold determined by the VAD parameters in params.py.
31
+ :param wav: the raw waveform as a numpy array of floats
32
+ :param vad_max_silence_length: Maximum number of consecutive silent frames a segment can have.
33
+ :return: the same waveform with silences trimmed away (length <= original wav length)
34
+ """
35
+
36
+ ## Voice Activation Detection
37
+ # Window size of the VAD. Must be either 10, 20 or 30 milliseconds.
38
+ # This sets the granularity of the VAD. Should not need to be changed.
39
+ sampling_rate = 16000
40
+ wav_raw, sr = librosa.core.load(path, sr=sr)
41
+
42
+ if norm:
43
+ meter = pyln.Meter(sr) # create BS.1770 meter
44
+ loudness = meter.integrated_loudness(wav_raw)
45
+ wav_raw = pyln.normalize.loudness(wav_raw, loudness, -20.0)
46
+ if np.abs(wav_raw).max() > 1.0:
47
+ wav_raw = wav_raw / np.abs(wav_raw).max()
48
+
49
+ wav = librosa.resample(wav_raw, sr, sampling_rate, res_type='kaiser_best')
50
+
51
+ vad_window_length = 30 # In milliseconds
52
+ # Number of frames to average together when performing the moving average smoothing.
53
+ # The larger this value, the larger the VAD variations must be to not get smoothed out.
54
+ vad_moving_average_width = 8
55
+
56
+ # Compute the voice detection window size
57
+ samples_per_window = (vad_window_length * sampling_rate) // 1000
58
+
59
+ # Trim the end of the audio to have a multiple of the window size
60
+ wav = wav[:len(wav) - (len(wav) % samples_per_window)]
61
+
62
+ # Convert the float waveform to 16-bit mono PCM
63
+ pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
64
+
65
+ # Perform voice activation detection
66
+ voice_flags = []
67
+ vad = webrtcvad.Vad(mode=3)
68
+ for window_start in range(0, len(wav), samples_per_window):
69
+ window_end = window_start + samples_per_window
70
+ voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
71
+ sample_rate=sampling_rate))
72
+ voice_flags = np.array(voice_flags)
73
+
74
+ # Smooth the voice detection with a moving average
75
+ def moving_average(array, width):
76
+ array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
77
+ ret = np.cumsum(array_padded, dtype=float)
78
+ ret[width:] = ret[width:] - ret[:-width]
79
+ return ret[width - 1:] / width
80
+
81
+ audio_mask = moving_average(voice_flags, vad_moving_average_width)
82
+ audio_mask = np.round(audio_mask).astype(np.bool)
83
+
84
+ # Dilate the voiced regions
85
+ audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
86
+ audio_mask = np.repeat(audio_mask, samples_per_window)
87
+ audio_mask = resize(audio_mask, (len(wav_raw),)) > 0
88
+ if return_raw_wav:
89
+ return wav_raw, audio_mask, sr
90
+ return wav_raw[audio_mask], audio_mask, sr
91
+
92
+
93
+ def process_utterance(wav_path,
94
+ fft_size=1024,
95
+ hop_size=256,
96
+ win_length=1024,
97
+ window="hann",
98
+ num_mels=80,
99
+ fmin=80,
100
+ fmax=7600,
101
+ eps=1e-6,
102
+ sample_rate=22050,
103
+ loud_norm=False,
104
+ min_level_db=-100,
105
+ return_linear=False,
106
+ trim_long_sil=False, vocoder='pwg'):
107
+ if isinstance(wav_path, str):
108
+ if trim_long_sil:
109
+ wav, _, _ = trim_long_silences(wav_path, sample_rate)
110
+ else:
111
+ wav, _ = librosa.core.load(wav_path, sr=sample_rate)
112
+ else:
113
+ wav = wav_path
114
+
115
+ if loud_norm:
116
+ meter = pyln.Meter(sample_rate) # create BS.1770 meter
117
+ loudness = meter.integrated_loudness(wav)
118
+ wav = pyln.normalize.loudness(wav, loudness, -22.0)
119
+ if np.abs(wav).max() > 1:
120
+ wav = wav / np.abs(wav).max()
121
+
122
+ # get amplitude spectrogram
123
+ x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size,
124
+ win_length=win_length, window=window, pad_mode="constant")
125
+ spc = np.abs(x_stft) # (n_bins, T)
126
+
127
+ # get mel basis
128
+ fmin = 0 if fmin == -1 else fmin
129
+ fmax = sample_rate / 2 if fmax == -1 else fmax
130
+ mel_basis = librosa.filters.mel(sample_rate, fft_size, num_mels, fmin, fmax)
131
+ mel = mel_basis @ spc
132
+
133
+ if vocoder == 'pwg':
134
+ mel = np.log10(np.maximum(eps, mel)) # (n_mel_bins, T)
135
+ else:
136
+ assert False, f'"{vocoder}" is not in ["pwg"].'
137
+
138
+ l_pad, r_pad = audio.librosa_pad_lr(wav, fft_size, hop_size, 1)
139
+ wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0)
140
+ wav = wav[:mel.shape[1] * hop_size]
141
+
142
+ if not return_linear:
143
+ return wav, mel
144
+ else:
145
+ spc = audio.amp_to_db(spc)
146
+ spc = audio.normalize(spc, {'min_level_db': min_level_db})
147
+ return wav, mel, spc
148
+
149
+
150
+ def get_pitch(wav_data, mel, hparams):
151
+ """
152
+
153
+ :param wav_data: [T]
154
+ :param mel: [T, 80]
155
+ :param hparams:
156
+ :return:
157
+ """
158
+ time_step = hparams['hop_size'] / hparams['audio_sample_rate'] * 1000
159
+ f0_min = 80
160
+ f0_max = 750
161
+
162
+ if hparams['hop_size'] == 128:
163
+ pad_size = 4
164
+ elif hparams['hop_size'] == 256:
165
+ pad_size = 2
166
+ else:
167
+ assert False
168
+
169
+ f0 = parselmouth.Sound(wav_data, hparams['audio_sample_rate']).to_pitch_ac(
170
+ time_step=time_step / 1000, voicing_threshold=0.6,
171
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
172
+ lpad = pad_size * 2
173
+ rpad = len(mel) - len(f0) - lpad
174
+ f0 = np.pad(f0, [[lpad, rpad]], mode='constant')
175
+ # mel and f0 are extracted by 2 different libraries. we should force them to have the same length.
176
+ # Attention: we find that new version of some libraries could cause ``rpad'' to be a negetive value...
177
+ # Just to be sure, we recommend users to set up the same environments as them in requirements_auto.txt (by Anaconda)
178
+ delta_l = len(mel) - len(f0)
179
+ assert np.abs(delta_l) <= 8
180
+ if delta_l > 0:
181
+ f0 = np.concatenate([f0, [f0[-1]] * delta_l], 0)
182
+ f0 = f0[:len(mel)]
183
+ pitch_coarse = f0_to_coarse(f0)
184
+ return f0, pitch_coarse
185
+
186
+
187
+ def remove_empty_lines(text):
188
+ """remove empty lines"""
189
+ assert (len(text) > 0)
190
+ assert (isinstance(text, list))
191
+ text = [t.strip() for t in text]
192
+ if "" in text:
193
+ text.remove("")
194
+ return text
195
+
196
+
197
+ class TextGrid(object):
198
+ def __init__(self, text):
199
+ text = remove_empty_lines(text)
200
+ self.text = text
201
+ self.line_count = 0
202
+ self._get_type()
203
+ self._get_time_intval()
204
+ self._get_size()
205
+ self.tier_list = []
206
+ self._get_item_list()
207
+
208
+ def _extract_pattern(self, pattern, inc):
209
+ """
210
+ Parameters
211
+ ----------
212
+ pattern : regex to extract pattern
213
+ inc : increment of line count after extraction
214
+ Returns
215
+ -------
216
+ group : extracted info
217
+ """
218
+ try:
219
+ group = re.match(pattern, self.text[self.line_count]).group(1)
220
+ self.line_count += inc
221
+ except AttributeError:
222
+ raise ValueError("File format error at line %d:%s" % (self.line_count, self.text[self.line_count]))
223
+ return group
224
+
225
+ def _get_type(self):
226
+ self.file_type = self._extract_pattern(r"File type = \"(.*)\"", 2)
227
+
228
+ def _get_time_intval(self):
229
+ self.xmin = self._extract_pattern(r"xmin = (.*)", 1)
230
+ self.xmax = self._extract_pattern(r"xmax = (.*)", 2)
231
+
232
+ def _get_size(self):
233
+ self.size = int(self._extract_pattern(r"size = (.*)", 2))
234
+
235
+ def _get_item_list(self):
236
+ """Only supports IntervalTier currently"""
237
+ for itemIdx in range(1, self.size + 1):
238
+ tier = OrderedDict()
239
+ item_list = []
240
+ tier_idx = self._extract_pattern(r"item \[(.*)\]:", 1)
241
+ tier_class = self._extract_pattern(r"class = \"(.*)\"", 1)
242
+ if tier_class != "IntervalTier":
243
+ raise NotImplementedError("Only IntervalTier class is supported currently")
244
+ tier_name = self._extract_pattern(r"name = \"(.*)\"", 1)
245
+ tier_xmin = self._extract_pattern(r"xmin = (.*)", 1)
246
+ tier_xmax = self._extract_pattern(r"xmax = (.*)", 1)
247
+ tier_size = self._extract_pattern(r"intervals: size = (.*)", 1)
248
+ for i in range(int(tier_size)):
249
+ item = OrderedDict()
250
+ item["idx"] = self._extract_pattern(r"intervals \[(.*)\]", 1)
251
+ item["xmin"] = self._extract_pattern(r"xmin = (.*)", 1)
252
+ item["xmax"] = self._extract_pattern(r"xmax = (.*)", 1)
253
+ item["text"] = self._extract_pattern(r"text = \"(.*)\"", 1)
254
+ item_list.append(item)
255
+ tier["idx"] = tier_idx
256
+ tier["class"] = tier_class
257
+ tier["name"] = tier_name
258
+ tier["xmin"] = tier_xmin
259
+ tier["xmax"] = tier_xmax
260
+ tier["size"] = tier_size
261
+ tier["items"] = item_list
262
+ self.tier_list.append(tier)
263
+
264
+ def toJson(self):
265
+ _json = OrderedDict()
266
+ _json["file_type"] = self.file_type
267
+ _json["xmin"] = self.xmin
268
+ _json["xmax"] = self.xmax
269
+ _json["size"] = self.size
270
+ _json["tiers"] = self.tier_list
271
+ return json.dumps(_json, ensure_ascii=False, indent=2)
272
+
273
+
274
+ def get_mel2ph(tg_fn, ph, mel, hparams):
275
+ ph_list = ph.split(" ")
276
+ with open(tg_fn, "r") as f:
277
+ tg = f.readlines()
278
+ tg = remove_empty_lines(tg)
279
+ tg = TextGrid(tg)
280
+ tg = json.loads(tg.toJson())
281
+ split = np.ones(len(ph_list) + 1, np.float) * -1
282
+ tg_idx = 0
283
+ ph_idx = 0
284
+ tg_align = [x for x in tg['tiers'][-1]['items']]
285
+ tg_align_ = []
286
+ for x in tg_align:
287
+ x['xmin'] = float(x['xmin'])
288
+ x['xmax'] = float(x['xmax'])
289
+ if x['text'] in ['sil', 'sp', '', 'SIL', 'PUNC']:
290
+ x['text'] = ''
291
+ if len(tg_align_) > 0 and tg_align_[-1]['text'] == '':
292
+ tg_align_[-1]['xmax'] = x['xmax']
293
+ continue
294
+ tg_align_.append(x)
295
+ tg_align = tg_align_
296
+ tg_len = len([x for x in tg_align if x['text'] != ''])
297
+ ph_len = len([x for x in ph_list if not is_sil_phoneme(x)])
298
+ assert tg_len == ph_len, (tg_len, ph_len, tg_align, ph_list, tg_fn)
299
+ while tg_idx < len(tg_align) or ph_idx < len(ph_list):
300
+ if tg_idx == len(tg_align) and is_sil_phoneme(ph_list[ph_idx]):
301
+ split[ph_idx] = 1e8
302
+ ph_idx += 1
303
+ continue
304
+ x = tg_align[tg_idx]
305
+ if x['text'] == '' and ph_idx == len(ph_list):
306
+ tg_idx += 1
307
+ continue
308
+ assert ph_idx < len(ph_list), (tg_len, ph_len, tg_align, ph_list, tg_fn)
309
+ ph = ph_list[ph_idx]
310
+ if x['text'] == '' and not is_sil_phoneme(ph):
311
+ assert False, (ph_list, tg_align)
312
+ if x['text'] != '' and is_sil_phoneme(ph):
313
+ ph_idx += 1
314
+ else:
315
+ assert (x['text'] == '' and is_sil_phoneme(ph)) \
316
+ or x['text'].lower() == ph.lower() \
317
+ or x['text'].lower() == 'sil', (x['text'], ph)
318
+ split[ph_idx] = x['xmin']
319
+ if ph_idx > 0 and split[ph_idx - 1] == -1 and is_sil_phoneme(ph_list[ph_idx - 1]):
320
+ split[ph_idx - 1] = split[ph_idx]
321
+ ph_idx += 1
322
+ tg_idx += 1
323
+ assert tg_idx == len(tg_align), (tg_idx, [x['text'] for x in tg_align])
324
+ assert ph_idx >= len(ph_list) - 1, (ph_idx, ph_list, len(ph_list), [x['text'] for x in tg_align], tg_fn)
325
+ mel2ph = np.zeros([mel.shape[0]], np.int)
326
+ split[0] = 0
327
+ split[-1] = 1e8
328
+ for i in range(len(split) - 1):
329
+ assert split[i] != -1 and split[i] <= split[i + 1], (split[:-1],)
330
+ split = [int(s * hparams['audio_sample_rate'] / hparams['hop_size'] + 0.5) for s in split]
331
+ for ph_idx in range(len(ph_list)):
332
+ mel2ph[split[ph_idx]:split[ph_idx + 1]] = ph_idx + 1
333
+ mel2ph_torch = torch.from_numpy(mel2ph)
334
+ T_t = len(ph_list)
335
+ dur = mel2ph_torch.new_zeros([T_t + 1]).scatter_add(0, mel2ph_torch, torch.ones_like(mel2ph_torch))
336
+ dur = dur[1:].numpy()
337
+ return mel2ph, dur
338
+
339
+
340
+ def build_phone_encoder(data_dir):
341
+ phone_list_file = os.path.join(data_dir, 'phone_set.json')
342
+ phone_list = json.load(open(phone_list_file))
343
+ return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',')
344
+
345
+
346
+ def build_word_encoder(data_dir):
347
+ word_list_file = os.path.join(data_dir, 'word_set.json')
348
+ word_list = json.load(open(word_list_file))
349
+ return TokenTextEncoder(None, vocab_list=word_list, replace_oov=',')
350
+
351
+ def is_sil_phoneme(p):
352
+ return not p[0].isalpha()
353
+
354
+
355
+ def build_token_encoder(token_list_file):
356
+ token_list = json.load(open(token_list_file))
357
+ return TokenTextEncoder(None, vocab_list=token_list, replace_oov='<UNK>')
NeuralSeq/data_gen/tts/emotion/__pycache__/audio.cpython-38.pyc ADDED
Binary file (3.8 kB). View file
 
NeuralSeq/data_gen/tts/emotion/__pycache__/inference.cpython-38.pyc ADDED
Binary file (7.28 kB). View file
 
NeuralSeq/data_gen/tts/emotion/__pycache__/model.cpython-38.pyc ADDED
Binary file (2.53 kB). View file
 
NeuralSeq/data_gen/tts/emotion/__pycache__/params_data.cpython-38.pyc ADDED
Binary file (491 Bytes). View file
 
NeuralSeq/data_gen/tts/emotion/__pycache__/params_model.cpython-38.pyc ADDED
Binary file (371 Bytes). View file
 
NeuralSeq/data_gen/tts/emotion/audio.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy.ndimage.morphology import binary_dilation
2
+ from data_gen.tts.emotion.params_data import *
3
+ from pathlib import Path
4
+ from typing import Optional, Union
5
+ import numpy as np
6
+ import webrtcvad
7
+ import librosa
8
+ import struct
9
+
10
+ int16_max = (2 ** 15) - 1
11
+
12
+
13
+ def preprocess_wav(fpath_or_wav: Union[str, Path, np.ndarray],
14
+ source_sr: Optional[int] = None):
15
+ """
16
+ Applies the preprocessing operations used in training the Speaker Encoder to a waveform
17
+ either on disk or in memory. The waveform will be resampled to match the data hyperparameters.
18
+
19
+ :param fpath_or_wav: either a filepath to an audio file (many extensions are supported, not
20
+ just .wav), either the waveform as a numpy array of floats.
21
+ :param source_sr: if passing an audio waveform, the sampling rate of the waveform before
22
+ preprocessing. After preprocessing, the waveform's sampling rate will match the data
23
+ hyperparameters. If passing a filepath, the sampling rate will be automatically detected and
24
+ this argument will be ignored.
25
+ """
26
+ # Load the wav from disk if needed
27
+ if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
28
+ wav, source_sr = librosa.load(str(fpath_or_wav), sr=None)
29
+ else:
30
+ wav = fpath_or_wav
31
+
32
+ # Resample the wav if needed
33
+ if source_sr is not None and source_sr != sampling_rate:
34
+ wav = librosa.resample(wav, source_sr, sampling_rate)
35
+
36
+ # Apply the preprocessing: normalize volume and shorten long silences
37
+ wav = normalize_volume(wav, audio_norm_target_dBFS, increase_only=True)
38
+ wav = trim_long_silences(wav)
39
+
40
+ return wav
41
+
42
+
43
+ def wav_to_mel_spectrogram(wav):
44
+ """
45
+ Derives a mel spectrogram ready to be used by the encoder from a preprocessed audio waveform.
46
+ Note: this not a log-mel spectrogram.
47
+ """
48
+ frames = librosa.feature.melspectrogram(
49
+ wav,
50
+ sampling_rate,
51
+ n_fft=int(sampling_rate * mel_window_length / 1000),
52
+ hop_length=int(sampling_rate * mel_window_step / 1000),
53
+ n_mels=mel_n_channels
54
+ )
55
+ return frames.astype(np.float32).T
56
+
57
+
58
+ def trim_long_silences(wav):
59
+ """
60
+ Ensures that segments without voice in the waveform remain no longer than a
61
+ threshold determined by the VAD parameters in params.py.
62
+
63
+ :param wav: the raw waveform as a numpy array of floats
64
+ :return: the same waveform with silences trimmed away (length <= original wav length)
65
+ """
66
+ # Compute the voice detection window size
67
+ samples_per_window = (vad_window_length * sampling_rate) // 1000
68
+
69
+ # Trim the end of the audio to have a multiple of the window size
70
+ wav = wav[:len(wav) - (len(wav) % samples_per_window)]
71
+
72
+ # Convert the float waveform to 16-bit mono PCM
73
+ pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
74
+
75
+ # Perform voice activation detection
76
+ voice_flags = []
77
+ vad = webrtcvad.Vad(mode=3)
78
+ for window_start in range(0, len(wav), samples_per_window):
79
+ window_end = window_start + samples_per_window
80
+ voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
81
+ sample_rate=sampling_rate))
82
+ voice_flags = np.array(voice_flags)
83
+
84
+ # Smooth the voice detection with a moving average
85
+ def moving_average(array, width):
86
+ array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
87
+ ret = np.cumsum(array_padded, dtype=float)
88
+ ret[width:] = ret[width:] - ret[:-width]
89
+ return ret[width - 1:] / width
90
+
91
+ audio_mask = moving_average(voice_flags, vad_moving_average_width)
92
+ audio_mask = np.round(audio_mask).astype(np.bool)
93
+
94
+ # Dilate the voiced regions
95
+ audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
96
+ audio_mask = np.repeat(audio_mask, samples_per_window)
97
+
98
+ return wav[audio_mask == True]
99
+
100
+
101
+ def normalize_volume(wav, target_dBFS, increase_only=False, decrease_only=False):
102
+ if increase_only and decrease_only:
103
+ raise ValueError("Both increase only and decrease only are set")
104
+ dBFS_change = target_dBFS - 10 * np.log10(np.mean(wav ** 2))
105
+ if (dBFS_change < 0 and increase_only) or (dBFS_change > 0 and decrease_only):
106
+ return wav
107
+ return wav * (10 ** (dBFS_change / 20))
NeuralSeq/data_gen/tts/emotion/inference.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data_gen.tts.emotion.params_data import *
2
+ from data_gen.tts.emotion.model import EmotionEncoder
3
+ from data_gen.tts.emotion.audio import preprocess_wav # We want to expose this function from here
4
+ from matplotlib import cm
5
+ from data_gen.tts.emotion import audio
6
+ from pathlib import Path
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import torch
10
+
11
+ _model = None # type: EmotionEncoder
12
+ _device = None # type: torch.device
13
+
14
+
15
+ def load_model(weights_fpath: Path, device=None):
16
+ """
17
+ Loads the model in memory. If this function is not explicitely called, it will be run on the
18
+ first call to embed_frames() with the default weights file.
19
+
20
+ :param weights_fpath: the path to saved model weights.
21
+ :param device: either a torch device or the name of a torch device (e.g. "cpu", "cuda"). The
22
+ model will be loaded and will run on this device. Outputs will however always be on the cpu.
23
+ If None, will default to your GPU if it"s available, otherwise your CPU.
24
+ """
25
+ # TODO: I think the slow loading of the encoder might have something to do with the device it
26
+ # was saved on. Worth investigating.
27
+ global _model, _device
28
+ if device is None:
29
+ _device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
30
+ elif isinstance(device, str):
31
+ _device = torch.device(device)
32
+ _model = EmotionEncoder(_device, torch.device("cpu"))
33
+ checkpoint = torch.load(weights_fpath)
34
+ _model.load_state_dict(checkpoint["model_state"])
35
+ _model.eval()
36
+ print("Loaded encoder trained to step %d" % (checkpoint["step"]))
37
+
38
+
39
+ def is_loaded():
40
+ return _model is not None
41
+
42
+
43
+ def embed_frames_batch(frames_batch):
44
+ """
45
+ Computes embeddings for a batch of mel spectrogram.
46
+
47
+ :param frames_batch: a batch mel of spectrogram as a numpy array of float32 of shape
48
+ (batch_size, n_frames, n_channels)
49
+ :return: the embeddings as a numpy array of float32 of shape (batch_size, model_embedding_size)
50
+ """
51
+ if _model is None:
52
+ raise Exception("Model was not loaded. Call load_model() before inference.")
53
+
54
+ frames = torch.from_numpy(frames_batch).to(_device)
55
+ embed = _model.inference(frames).detach().cpu().numpy()
56
+ return embed
57
+
58
+
59
+ def compute_partial_slices(n_samples, partial_utterance_n_frames=partials_n_frames,
60
+ min_pad_coverage=0.75, overlap=0.5):
61
+ """
62
+ Computes where to split an utterance waveform and its corresponding mel spectrogram to obtain
63
+ partial utterances of <partial_utterance_n_frames> each. Both the waveform and the mel
64
+ spectrogram slices are returned, so as to make each partial utterance waveform correspond to
65
+ its spectrogram. This function assumes that the mel spectrogram parameters used are those
66
+ defined in params_data.py.
67
+
68
+ The returned ranges may be indexing further than the length of the waveform. It is
69
+ recommended that you pad the waveform with zeros up to wave_slices[-1].stop.
70
+
71
+ :param n_samples: the number of samples in the waveform
72
+ :param partial_utterance_n_frames: the number of mel spectrogram frames in each partial
73
+ utterance
74
+ :param min_pad_coverage: when reaching the last partial utterance, it may or may not have
75
+ enough frames. If at least <min_pad_coverage> of <partial_utterance_n_frames> are present,
76
+ then the last partial utterance will be considered, as if we padded the audio. Otherwise,
77
+ it will be discarded, as if we trimmed the audio. If there aren't enough frames for 1 partial
78
+ utterance, this parameter is ignored so that the function always returns at least 1 slice.
79
+ :param overlap: by how much the partial utterance should overlap. If set to 0, the partial
80
+ utterances are entirely disjoint.
81
+ :return: the waveform slices and mel spectrogram slices as lists of array slices. Index
82
+ respectively the waveform and the mel spectrogram with these slices to obtain the partial
83
+ utterances.
84
+ """
85
+ assert 0 <= overlap < 1
86
+ assert 0 < min_pad_coverage <= 1
87
+
88
+ samples_per_frame = int((sampling_rate * mel_window_step / 1000))
89
+ n_frames = int(np.ceil((n_samples + 1) / samples_per_frame))
90
+ frame_step = max(int(np.round(partial_utterance_n_frames * (1 - overlap))), 1)
91
+
92
+ # Compute the slices
93
+ wav_slices, mel_slices = [], []
94
+ steps = max(1, n_frames - partial_utterance_n_frames + frame_step + 1)
95
+ for i in range(0, steps, frame_step):
96
+ mel_range = np.array([i, i + partial_utterance_n_frames])
97
+ wav_range = mel_range * samples_per_frame
98
+ mel_slices.append(slice(*mel_range))
99
+ wav_slices.append(slice(*wav_range))
100
+
101
+ # Evaluate whether extra padding is warranted or not
102
+ last_wav_range = wav_slices[-1]
103
+ coverage = (n_samples - last_wav_range.start) / (last_wav_range.stop - last_wav_range.start)
104
+ if coverage < min_pad_coverage and len(mel_slices) > 1:
105
+ mel_slices = mel_slices[:-1]
106
+ wav_slices = wav_slices[:-1]
107
+
108
+ return wav_slices, mel_slices
109
+
110
+
111
+ def embed_utterance(wav, using_partials=True, return_partials=False, **kwargs):
112
+ """
113
+ Computes an embedding for a single utterance.
114
+
115
+ # TODO: handle multiple wavs to benefit from batching on GPU
116
+ :param wav: a preprocessed (see audio.py) utterance waveform as a numpy array of float32
117
+ :param using_partials: if True, then the utterance is split in partial utterances of
118
+ <partial_utterance_n_frames> frames and the utterance embedding is computed from their
119
+ normalized average. If False, the utterance is instead computed from feeding the entire
120
+ spectogram to the network.
121
+ :param return_partials: if True, the partial embeddings will also be returned along with the
122
+ wav slices that correspond to the partial embeddings.
123
+ :param kwargs: additional arguments to compute_partial_splits()
124
+ :return: the embedding as a numpy array of float32 of shape (model_embedding_size,). If
125
+ <return_partials> is True, the partial utterances as a numpy array of float32 of shape
126
+ (n_partials, model_embedding_size) and the wav partials as a list of slices will also be
127
+ returned. If <using_partials> is simultaneously set to False, both these values will be None
128
+ instead.
129
+ """
130
+ # Process the entire utterance if not using partials
131
+ if not using_partials:
132
+ frames = audio.wav_to_mel_spectrogram(wav)
133
+ embed = embed_frames_batch(frames[None, ...])[0]
134
+ if return_partials:
135
+ return embed, None, None
136
+ return embed
137
+
138
+ # Compute where to split the utterance into partials and pad if necessary
139
+ wave_slices, mel_slices = compute_partial_slices(len(wav), **kwargs)
140
+ max_wave_length = wave_slices[-1].stop
141
+ if max_wave_length >= len(wav):
142
+ wav = np.pad(wav, (0, max_wave_length - len(wav)), "constant")
143
+
144
+ # Split the utterance into partials
145
+ frames = audio.wav_to_mel_spectrogram(wav)
146
+ frames_batch = np.array([frames[s] for s in mel_slices])
147
+ partial_embeds = embed_frames_batch(frames_batch)
148
+
149
+ # Compute the utterance embedding from the partial embeddings
150
+ raw_embed = np.mean(partial_embeds, axis=0)
151
+ embed = raw_embed / np.linalg.norm(raw_embed, 2)
152
+
153
+ if return_partials:
154
+ return embed, partial_embeds, wave_slices
155
+ return embed
156
+
157
+
158
+ def embed_speaker(wavs, **kwargs):
159
+ raise NotImplemented()
160
+
161
+
162
+ def plot_embedding_as_heatmap(embed, ax=None, title="", shape=None, color_range=(0, 0.30)):
163
+ if ax is None:
164
+ ax = plt.gca()
165
+
166
+ if shape is None:
167
+ height = int(np.sqrt(len(embed)))
168
+ shape = (height, -1)
169
+ embed = embed.reshape(shape)
170
+
171
+ cmap = cm.get_cmap()
172
+ mappable = ax.imshow(embed, cmap=cmap)
173
+ cbar = plt.colorbar(mappable, ax=ax, fraction=0.046, pad=0.04)
174
+ cbar.set_clim(*color_range)
175
+
176
+ ax.set_xticks([]), ax.set_yticks([])
177
+ ax.set_title(title)
NeuralSeq/data_gen/tts/emotion/model.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from data_gen.tts.emotion.params_model import *
3
+ from data_gen.tts.emotion.params_data import *
4
+ from torch.nn.utils import clip_grad_norm_
5
+ from scipy.optimize import brentq
6
+ from torch import nn
7
+ import numpy as np
8
+ import torch
9
+
10
+
11
+ class EmotionEncoder(nn.Module):
12
+ def __init__(self, device, loss_device):
13
+ super().__init__()
14
+ self.loss_device = loss_device
15
+
16
+ # Network defition
17
+ self.lstm = nn.LSTM(input_size=mel_n_channels,
18
+ hidden_size=model_hidden_size,
19
+ num_layers=model_num_layers,
20
+ batch_first=True).to(device)
21
+ self.linear = nn.Linear(in_features=model_hidden_size,
22
+ out_features=model_embedding_size).to(device)
23
+ self.relu = torch.nn.ReLU().to(device)
24
+
25
+
26
+ # Cosine similarity scaling (with fixed initial parameter values)
27
+ self.similarity_weight = nn.Parameter(torch.tensor([10.])).to(loss_device)
28
+ self.similarity_bias = nn.Parameter(torch.tensor([-5.])).to(loss_device)
29
+
30
+ # Loss
31
+ self.loss_fn = nn.CrossEntropyLoss().to(loss_device)
32
+
33
+ def do_gradient_ops(self):
34
+ # Gradient scale
35
+ self.similarity_weight.grad *= 0.01
36
+ self.similarity_bias.grad *= 0.01
37
+
38
+ # Gradient clipping
39
+ clip_grad_norm_(self.parameters(), 3, norm_type=2)
40
+
41
+ def forward(self, utterances, hidden_init=None):
42
+ """
43
+ Computes the embeddings of a batch of utterance spectrograms.
44
+
45
+ :param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape
46
+ (batch_size, n_frames, n_channels)
47
+ :param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers,
48
+ batch_size, hidden_size). Will default to a tensor of zeros if None.
49
+ :return: the embeddings as a tensor of shape (batch_size, embedding_size)
50
+ """
51
+ # Pass the input through the LSTM layers and retrieve all outputs, the final hidden state
52
+ # and the final cell state.
53
+ out, (hidden, cell) = self.lstm(utterances, hidden_init)
54
+
55
+ # We take only the hidden state of the last layer
56
+ embeds_raw = self.relu(self.linear(hidden[-1]))
57
+
58
+ # L2-normalize it
59
+ embeds = embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
60
+
61
+ return embeds
62
+
63
+ def inference(self, utterances, hidden_init=None):
64
+ """
65
+ Computes the embeddings of a batch of utterance spectrograms.
66
+
67
+ :param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape
68
+ (batch_size, n_frames, n_channels)
69
+ :param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers,
70
+ batch_size, hidden_size). Will default to a tensor of zeros if None.
71
+ :return: the embeddings as a tensor of shape (batch_size, embedding_size)
72
+ """
73
+ # Pass the input through the LSTM layers and retrieve all outputs, the final hidden state
74
+ # and the final cell state.
75
+
76
+ out, (hidden, cell) = self.lstm(utterances, hidden_init)
77
+
78
+ return hidden[-1]
NeuralSeq/data_gen/tts/emotion/params_data.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ## Mel-filterbank
3
+ mel_window_length = 25 # In milliseconds
4
+ mel_window_step = 10 # In milliseconds
5
+ mel_n_channels = 40
6
+
7
+
8
+ ## Audio
9
+ sampling_rate = 16000
10
+ # Number of spectrogram frames in a partial utterance
11
+ partials_n_frames = 160 # 1600 ms
12
+ # Number of spectrogram frames at inference
13
+ inference_n_frames = 80 # 800 ms
14
+
15
+
16
+ ## Voice Activation Detection
17
+ # Window size of the VAD. Must be either 10, 20 or 30 milliseconds.
18
+ # This sets the granularity of the VAD. Should not need to be changed.
19
+ vad_window_length = 30 # In milliseconds
20
+ # Number of frames to average together when performing the moving average smoothing.
21
+ # The larger this value, the larger the VAD variations must be to not get smoothed out.
22
+ vad_moving_average_width = 8
23
+ # Maximum number of consecutive silent frames a segment can have.
24
+ vad_max_silence_length = 6
25
+
26
+
27
+ ## Audio volume normalization
28
+ audio_norm_target_dBFS = -30
29
+
NeuralSeq/data_gen/tts/emotion/params_model.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ## Model parameters
3
+ model_hidden_size = 256
4
+ model_embedding_size = 256
5
+ model_num_layers = 3
6
+
7
+
8
+ ## Training parameters
9
+ learning_rate_init = 1e-4
10
+ speakers_per_batch = 6
11
+ utterances_per_speaker = 20
NeuralSeq/data_gen/tts/emotion/test_emotion.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3 -u
2
+ # Copyright (c) Facebook, Inc. and its affiliates.
3
+ #
4
+ # This source code is licensed under the MIT license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """
8
+ Run inference for pre-processed data with a trained model.
9
+ """
10
+
11
+ import logging
12
+ import math
13
+ import numpy, math, pdb, sys, random
14
+ import time, os, itertools, shutil, importlib
15
+ import argparse
16
+ import os
17
+ import sys
18
+ import glob
19
+ from sklearn import metrics
20
+ import soundfile as sf
21
+ #import sentencepiece as spm
22
+ import torch
23
+ import inference as encoder
24
+ import torch.nn as nn
25
+ import torch.nn.functional as F
26
+ from pathlib import Path
27
+ logger = logging.getLogger(__name__)
28
+ logger.setLevel(logging.INFO)
29
+ from resemblyzer import VoiceEncoder, preprocess_wav
30
+
31
+
32
+ def tuneThresholdfromScore(scores, labels, target_fa, target_fr=None):
33
+ fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1)
34
+ fnr = 1 - tpr
35
+
36
+ fnr = fnr * 100
37
+ fpr = fpr * 100
38
+
39
+ tunedThreshold = [];
40
+ if target_fr:
41
+ for tfr in target_fr:
42
+ idx = numpy.nanargmin(numpy.absolute((tfr - fnr)))
43
+ tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]);
44
+
45
+ for tfa in target_fa:
46
+ idx = numpy.nanargmin(numpy.absolute((tfa - fpr))) # numpy.where(fpr<=tfa)[0][-1]
47
+ tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]]);
48
+
49
+ idxE = numpy.nanargmin(numpy.absolute((fnr - fpr)))
50
+ eer = max(fpr[idxE], fnr[idxE])
51
+
52
+ return (tunedThreshold, eer, fpr, fnr);
53
+
54
+
55
+ def loadWAV(filename, max_frames, evalmode=True, num_eval=10):
56
+ # Maximum audio length
57
+ max_audio = max_frames * 160 + 240
58
+
59
+ # Read wav file and convert to torch tensor
60
+ audio,sample_rate = sf.read(filename)
61
+
62
+ feats_v0 = torch.from_numpy(audio).float()
63
+ audiosize = audio.shape[0]
64
+
65
+ if audiosize <= max_audio:
66
+ shortage = math.floor((max_audio - audiosize + 1) / 2)
67
+ audio = numpy.pad(audio, (shortage, shortage), 'constant', constant_values=0)
68
+ audiosize = audio.shape[0]
69
+
70
+ if evalmode:
71
+ startframe = numpy.linspace(0, audiosize - max_audio, num=num_eval)
72
+ else:
73
+ startframe = numpy.array([numpy.int64(random.random() * (audiosize - max_audio))])
74
+ feats = []
75
+ if evalmode and max_frames == 0:
76
+ feats.append(audio)
77
+ else:
78
+ for asf in startframe:
79
+ feats.append(audio[int(asf):int(asf) + max_audio])
80
+ feat = numpy.stack(feats, axis=0)
81
+ feat = torch.FloatTensor(feat)
82
+ return feat;
83
+
84
+ def evaluateFromList(listfilename, print_interval=100, test_path='', multi=False):
85
+
86
+ lines = []
87
+ files = []
88
+ feats = {}
89
+ tstart = time.time()
90
+
91
+ ## Read all lines
92
+ with open(listfilename) as listfile:
93
+ while True:
94
+ line = listfile.readline();
95
+ if (not line):
96
+ break;
97
+
98
+ data = line.split();
99
+
100
+ ## Append random label if missing
101
+ if len(data) == 2: data = [random.randint(0,1)] + data
102
+
103
+ files.append(data[1])
104
+ files.append(data[2])
105
+ lines.append(line)
106
+
107
+ setfiles = list(set(files))
108
+ setfiles.sort()
109
+ ## Save all features to file
110
+ for idx, file in enumerate(setfiles):
111
+ # preprocessed_wav = encoder.preprocess_wav(os.path.join(test_path,file))
112
+ # embed = encoder.embed_utterance(preprocessed_wav)
113
+ processed_wav = preprocess_wav(os.path.join(test_path,file))
114
+ embed = voice_encoder.embed_utterance(processed_wav)
115
+
116
+ torch.cuda.empty_cache()
117
+ ref_feat = torch.from_numpy(embed).unsqueeze(0)
118
+
119
+ feats[file] = ref_feat
120
+
121
+ telapsed = time.time() - tstart
122
+
123
+ if idx % print_interval == 0:
124
+ sys.stdout.write("\rReading %d of %d: %.2f Hz, embedding size %d"%(idx,len(setfiles),idx/telapsed,ref_feat.size()[1]));
125
+
126
+ print('')
127
+ all_scores = [];
128
+ all_labels = [];
129
+ all_trials = [];
130
+ tstart = time.time()
131
+
132
+ ## Read files and compute all scores
133
+ for idx, line in enumerate(lines):
134
+
135
+ data = line.split();
136
+ ## Append random label if missing
137
+ if len(data) == 2: data = [random.randint(0,1)] + data
138
+
139
+ ref_feat = feats[data[1]]
140
+ com_feat = feats[data[2]]
141
+ ref_feat = ref_feat.cuda()
142
+ com_feat = com_feat.cuda()
143
+ # normalize feats
144
+ ref_feat = F.normalize(ref_feat, p=2, dim=1)
145
+ com_feat = F.normalize(com_feat, p=2, dim=1)
146
+
147
+ dist = F.pairwise_distance(ref_feat.unsqueeze(-1), com_feat.unsqueeze(-1)).detach().cpu().numpy();
148
+
149
+ score = -1 * numpy.mean(dist);
150
+
151
+ all_scores.append(score);
152
+ all_labels.append(int(data[0]));
153
+ all_trials.append(data[1]+" "+data[2])
154
+
155
+ if idx % print_interval == 0:
156
+ telapsed = time.time() - tstart
157
+ sys.stdout.write("\rComputing %d of %d: %.2f Hz"%(idx,len(lines),idx/telapsed));
158
+ sys.stdout.flush();
159
+
160
+ print('\n')
161
+
162
+ return (all_scores, all_labels, all_trials);
163
+
164
+
165
+
166
+ if __name__ == '__main__':
167
+
168
+ parser = argparse.ArgumentParser("baseline")
169
+ parser.add_argument("--data_root", type=str, help="", required=True)
170
+ parser.add_argument("--list", type=str, help="", required=True)
171
+ parser.add_argument("--model_dir", type=str, help="model parameters for AudioEncoder", required=True)
172
+
173
+ args = parser.parse_args()
174
+
175
+
176
+ # Load the models one by one.
177
+ print("Preparing the encoder...")
178
+ # encoder.load_model(Path(args.model_dir))
179
+ print("Insert the wav file name...")
180
+ voice_encoder = VoiceEncoder().cuda()
181
+
182
+ sc, lab, trials = evaluateFromList(args.list, print_interval=100, test_path=args.data_root)
183
+ result = tuneThresholdfromScore(sc, lab, [1, 0.1]);
184
+ print('EER %2.4f'%result[1])
NeuralSeq/data_gen/tts/txt_processors/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from . import en
NeuralSeq/data_gen/tts/txt_processors/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (218 Bytes). View file
 
NeuralSeq/data_gen/tts/txt_processors/__pycache__/base_text_processor.cpython-38.pyc ADDED
Binary file (1.9 kB). View file
 
NeuralSeq/data_gen/tts/txt_processors/__pycache__/en.cpython-38.pyc ADDED
Binary file (2.87 kB). View file
 
NeuralSeq/data_gen/tts/txt_processors/base_text_processor.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data_gen.tts.data_gen_utils import is_sil_phoneme
2
+
3
+ REGISTERED_TEXT_PROCESSORS = {}
4
+
5
+ def register_txt_processors(name):
6
+ def _f(cls):
7
+ REGISTERED_TEXT_PROCESSORS[name] = cls
8
+ return cls
9
+
10
+ return _f
11
+
12
+
13
+ def get_txt_processor_cls(name):
14
+ return REGISTERED_TEXT_PROCESSORS.get(name, None)
15
+
16
+
17
+ class BaseTxtProcessor:
18
+ @staticmethod
19
+ def sp_phonemes():
20
+ return ['|']
21
+
22
+ @classmethod
23
+ def process(cls, txt, preprocess_args):
24
+ raise NotImplementedError
25
+
26
+ @classmethod
27
+ def postprocess(cls, txt_struct, preprocess_args):
28
+ # remove sil phoneme in head and tail
29
+ while len(txt_struct) > 0 and is_sil_phoneme(txt_struct[0][0]):
30
+ txt_struct = txt_struct[1:]
31
+ while len(txt_struct) > 0 and is_sil_phoneme(txt_struct[-1][0]):
32
+ txt_struct = txt_struct[:-1]
33
+ if preprocess_args['with_phsep']:
34
+ txt_struct = cls.add_bdr(txt_struct)
35
+ if preprocess_args['add_eos_bos']:
36
+ txt_struct = [["<BOS>", ["<BOS>"]]] + txt_struct + [["<EOS>", ["<EOS>"]]]
37
+ return txt_struct
38
+
39
+ @classmethod
40
+ def add_bdr(cls, txt_struct):
41
+ txt_struct_ = []
42
+ for i, ts in enumerate(txt_struct):
43
+ txt_struct_.append(ts)
44
+ if i != len(txt_struct) - 1 and \
45
+ not is_sil_phoneme(txt_struct[i][0]) and not is_sil_phoneme(txt_struct[i + 1][0]):
46
+ txt_struct_.append(['|', ['|']])
47
+ return txt_struct_
NeuralSeq/data_gen/tts/txt_processors/en.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import unicodedata
3
+
4
+ from g2p_en import G2p
5
+ from g2p_en.expand import normalize_numbers
6
+ from nltk import pos_tag
7
+ from nltk.tokenize import TweetTokenizer
8
+
9
+ from data_gen.tts.txt_processors.base_text_processor import BaseTxtProcessor, register_txt_processors
10
+ from data_gen.tts.data_gen_utils import is_sil_phoneme, PUNCS
11
+
12
+ class EnG2p(G2p):
13
+ word_tokenize = TweetTokenizer().tokenize
14
+
15
+ def __call__(self, text):
16
+ # preprocessing
17
+ words = EnG2p.word_tokenize(text)
18
+ tokens = pos_tag(words) # tuples of (word, tag)
19
+
20
+ # steps
21
+ prons = []
22
+ for word, pos in tokens:
23
+ if re.search("[a-z]", word) is None:
24
+ pron = [word]
25
+
26
+ elif word in self.homograph2features: # Check homograph
27
+ pron1, pron2, pos1 = self.homograph2features[word]
28
+ if pos.startswith(pos1):
29
+ pron = pron1
30
+ else:
31
+ pron = pron2
32
+ elif word in self.cmu: # lookup CMU dict
33
+ pron = self.cmu[word][0]
34
+ else: # predict for oov
35
+ pron = self.predict(word)
36
+
37
+ prons.extend(pron)
38
+ prons.extend([" "])
39
+
40
+ return prons[:-1]
41
+
42
+
43
+ @register_txt_processors('en')
44
+ class TxtProcessor(BaseTxtProcessor):
45
+ g2p = EnG2p()
46
+
47
+ @staticmethod
48
+ def preprocess_text(text):
49
+ text = normalize_numbers(text)
50
+ text = ''.join(char for char in unicodedata.normalize('NFD', text)
51
+ if unicodedata.category(char) != 'Mn') # Strip accents
52
+ text = text.lower()
53
+ text = re.sub("[\'\"()]+", "", text)
54
+ text = re.sub("[-]+", " ", text)
55
+ text = re.sub(f"[^ a-z{PUNCS}]", "", text)
56
+ text = re.sub(f" ?([{PUNCS}]) ?", r"\1", text) # !! -> !
57
+ text = re.sub(f"([{PUNCS}])+", r"\1", text) # !! -> !
58
+ text = text.replace("i.e.", "that is")
59
+ text = text.replace("i.e.", "that is")
60
+ text = text.replace("etc.", "etc")
61
+ text = re.sub(f"([{PUNCS}])", r" \1 ", text)
62
+ text = re.sub(rf"\s+", r" ", text)
63
+ return text
64
+
65
+ @classmethod
66
+ def process(cls, txt, preprocess_args):
67
+ txt = cls.preprocess_text(txt).strip()
68
+ phs = cls.g2p(txt)
69
+ txt_struct = [[w, []] for w in txt.split(" ")]
70
+ i_word = 0
71
+ for p in phs:
72
+ if p == ' ':
73
+ i_word += 1
74
+ else:
75
+ txt_struct[i_word][1].append(p)
76
+ txt_struct = cls.postprocess(txt_struct, preprocess_args)
77
+ return txt_struct, txt
NeuralSeq/data_gen/tts/txt_processors/zh.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import jieba
3
+ from pypinyin import pinyin, Style
4
+ from data_gen.tts.data_gen_utils import PUNCS
5
+ from data_gen.tts.txt_processors.base_text_processor import BaseTxtProcessor
6
+ from utils.text_norm import NSWNormalizer
7
+
8
+
9
+ class TxtProcessor(BaseTxtProcessor):
10
+ table = {ord(f): ord(t) for f, t in zip(
11
+ u':,。!?【】()%#@&1234567890',
12
+ u':,.!?[]()%#@&1234567890')}
13
+
14
+ @staticmethod
15
+ def preprocess_text(text):
16
+ text = text.translate(TxtProcessor.table)
17
+ text = NSWNormalizer(text).normalize(remove_punc=False)
18
+ text = re.sub("[\'\"()]+", "", text)
19
+ text = re.sub("[-]+", " ", text)
20
+ text = re.sub(f"[^ A-Za-z\u4e00-\u9fff{PUNCS}]", "", text)
21
+ text = re.sub(f"([{PUNCS}])+", r"\1", text) # !! -> !
22
+ text = re.sub(f"([{PUNCS}])", r" \1 ", text)
23
+ text = re.sub(rf"\s+", r"", text)
24
+ text = re.sub(rf"[A-Za-z]+", r"$", text)
25
+ return text
26
+
27
+ @classmethod
28
+ def process(cls, txt, pre_align_args):
29
+ txt = cls.preprocess_text(txt)
30
+ shengmu = pinyin(txt, style=Style.INITIALS) # https://blog.csdn.net/zhoulei124/article/details/89055403
31
+ yunmu_finals = pinyin(txt, style=Style.FINALS)
32
+ yunmu_tone3 = pinyin(txt, style=Style.FINALS_TONE3)
33
+ yunmu = [[t[0] + '5'] if t[0] == f[0] else t for f, t in zip(yunmu_finals, yunmu_tone3)] \
34
+ if pre_align_args['use_tone'] else yunmu_finals
35
+
36
+ assert len(shengmu) == len(yunmu)
37
+ phs = ["|"]
38
+ for a, b, c in zip(shengmu, yunmu, yunmu_finals):
39
+ if a[0] == c[0]:
40
+ phs += [a[0], "|"]
41
+ else:
42
+ phs += [a[0], b[0], "|"]
43
+ return phs, txt