Spaces:
Build error
Build error
File size: 58,475 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 |
import matplotlib
from torch.nn import DataParallel
from torch.nn.parallel import DistributedDataParallel
matplotlib.use('Agg')
import glob
import itertools
import subprocess
import threading
import traceback
from pytorch_lightning.callbacks import GradientAccumulationScheduler
from pytorch_lightning.callbacks import ModelCheckpoint
from functools import wraps
from torch.cuda._utils import _get_device_index
import numpy as np
import torch.optim
import torch.utils.data
import copy
import logging
import os
import re
import sys
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import tqdm
from torch.optim.optimizer import Optimizer
def get_a_var(obj): # pragma: no cover
if isinstance(obj, torch.Tensor):
return obj
if isinstance(obj, list) or isinstance(obj, tuple):
for result in map(get_a_var, obj):
if isinstance(result, torch.Tensor):
return result
if isinstance(obj, dict):
for result in map(get_a_var, obj.items()):
if isinstance(result, torch.Tensor):
return result
return None
def data_loader(fn):
"""
Decorator to make any fx with this use the lazy property
:param fn:
:return:
"""
wraps(fn)
attr_name = '_lazy_' + fn.__name__
def _get_data_loader(self):
try:
value = getattr(self, attr_name)
except AttributeError:
try:
value = fn(self) # Lazy evaluation, done only once.
if (
value is not None and
not isinstance(value, list) and
fn.__name__ in ['test_dataloader', 'val_dataloader']
):
value = [value]
except AttributeError as e:
# Guard against AttributeError suppression. (Issue #142)
traceback.print_exc()
error = f'{fn.__name__}: An AttributeError was encountered: ' + str(e)
raise RuntimeError(error) from e
setattr(self, attr_name, value) # Memoize evaluation.
return value
return _get_data_loader
def parallel_apply(modules, inputs, kwargs_tup=None, devices=None): # pragma: no cover
r"""Applies each `module` in :attr:`modules` in parallel on arguments
contained in :attr:`inputs` (positional) and :attr:`kwargs_tup` (keyword)
on each of :attr:`devices`.
Args:
modules (Module): modules to be parallelized
inputs (tensor): inputs to the modules
devices (list of int or torch.device): CUDA devices
:attr:`modules`, :attr:`inputs`, :attr:`kwargs_tup` (if given), and
:attr:`devices` (if given) should all have same length. Moreover, each
element of :attr:`inputs` can either be a single object as the only argument
to a module, or a collection of positional arguments.
"""
assert len(modules) == len(inputs)
if kwargs_tup is not None:
assert len(modules) == len(kwargs_tup)
else:
kwargs_tup = ({},) * len(modules)
if devices is not None:
assert len(modules) == len(devices)
else:
devices = [None] * len(modules)
devices = list(map(lambda x: _get_device_index(x, True), devices))
lock = threading.Lock()
results = {}
grad_enabled = torch.is_grad_enabled()
def _worker(i, module, input, kwargs, device=None):
torch.set_grad_enabled(grad_enabled)
if device is None:
device = get_a_var(input).get_device()
try:
with torch.cuda.device(device):
# this also avoids accidental slicing of `input` if it is a Tensor
if not isinstance(input, (list, tuple)):
input = (input,)
# ---------------
# CHANGE
if module.training:
output = module.training_step(*input, **kwargs)
elif module.testing:
output = module.test_step(*input, **kwargs)
else:
output = module.validation_step(*input, **kwargs)
# ---------------
with lock:
results[i] = output
except Exception as e:
with lock:
results[i] = e
# make sure each module knows what training state it's in...
# fixes weird bug where copies are out of sync
root_m = modules[0]
for m in modules[1:]:
m.training = root_m.training
m.testing = root_m.testing
if len(modules) > 1:
threads = [threading.Thread(target=_worker,
args=(i, module, input, kwargs, device))
for i, (module, input, kwargs, device) in
enumerate(zip(modules, inputs, kwargs_tup, devices))]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
else:
_worker(0, modules[0], inputs[0], kwargs_tup[0], devices[0])
outputs = []
for i in range(len(inputs)):
output = results[i]
if isinstance(output, Exception):
raise output
outputs.append(output)
return outputs
def _find_tensors(obj): # pragma: no cover
r"""
Recursively find all tensors contained in the specified object.
"""
if isinstance(obj, torch.Tensor):
return [obj]
if isinstance(obj, (list, tuple)):
return itertools.chain(*map(_find_tensors, obj))
if isinstance(obj, dict):
return itertools.chain(*map(_find_tensors, obj.values()))
return []
class DDP(DistributedDataParallel):
"""
Override the forward call in lightning so it goes to training and validation step respectively
"""
def parallel_apply(self, replicas, inputs, kwargs):
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
def forward(self, *inputs, **kwargs): # pragma: no cover
self._sync_params()
if self.device_ids:
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
if len(self.device_ids) == 1:
# --------------
# LIGHTNING MOD
# --------------
# normal
# output = self.module(*inputs[0], **kwargs[0])
# lightning
if self.module.training:
output = self.module.training_step(*inputs[0], **kwargs[0])
elif self.module.testing:
output = self.module.test_step(*inputs[0], **kwargs[0])
else:
output = self.module.validation_step(*inputs[0], **kwargs[0])
else:
outputs = self.parallel_apply(self._module_copies[:len(inputs)], inputs, kwargs)
output = self.gather(outputs, self.output_device)
else:
# normal
output = self.module(*inputs, **kwargs)
if torch.is_grad_enabled():
# We'll return the output object verbatim since it is a freeform
# object. We need to find any tensors in this object, though,
# because we need to figure out which parameters were used during
# this forward pass, to ensure we short circuit reduction for any
# unused parameters. Only if `find_unused_parameters` is set.
if self.find_unused_parameters:
self.reducer.prepare_for_backward(list(_find_tensors(output)))
else:
self.reducer.prepare_for_backward([])
return output
class DP(DataParallel):
"""
Override the forward call in lightning so it goes to training and validation step respectively
"""
def forward(self, *inputs, **kwargs):
if not self.device_ids:
return self.module(*inputs, **kwargs)
for t in itertools.chain(self.module.parameters(), self.module.buffers()):
if t.device != self.src_device_obj:
raise RuntimeError("module must have its parameters and buffers "
"on device {} (device_ids[0]) but found one of "
"them on device: {}".format(self.src_device_obj, t.device))
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
if len(self.device_ids) == 1:
# lightning
if self.module.training:
return self.module.training_step(*inputs[0], **kwargs[0])
elif self.module.testing:
return self.module.test_step(*inputs[0], **kwargs[0])
else:
return self.module.validation_step(*inputs[0], **kwargs[0])
replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
outputs = self.parallel_apply(replicas, inputs, kwargs)
return self.gather(outputs, self.output_device)
def parallel_apply(self, replicas, inputs, kwargs):
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
class GradientAccumulationScheduler:
def __init__(self, scheduling: dict):
if scheduling == {}: # empty dict error
raise TypeError("Empty dict cannot be interpreted correct")
for key in scheduling.keys():
if not isinstance(key, int) or not isinstance(scheduling[key], int):
raise TypeError("All epoches and accumulation factor must be integers")
minimal_epoch = min(scheduling.keys())
if minimal_epoch < 1:
msg = f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct"
raise IndexError(msg)
elif minimal_epoch != 1: # if user didnt define first epoch accumulation factor
scheduling.update({1: 1})
self.scheduling = scheduling
self.epochs = sorted(scheduling.keys())
def on_epoch_begin(self, epoch, trainer):
epoch += 1 # indexing epochs from 1
for i in reversed(range(len(self.epochs))):
if epoch >= self.epochs[i]:
trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i])
break
class LatestModelCheckpoint(ModelCheckpoint):
def __init__(self, filepath, monitor='val_loss', verbose=0, num_ckpt_keep=5,
save_weights_only=False, mode='auto', period=1, prefix='model', save_best=True):
super(ModelCheckpoint, self).__init__()
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
os.makedirs(filepath, exist_ok=True)
self.num_ckpt_keep = num_ckpt_keep
self.save_best = save_best
self.save_weights_only = save_weights_only
self.period = period
self.epochs_since_last_check = 0
self.prefix = prefix
self.best_k_models = {}
# {filename: monitor}
self.kth_best_model = ''
self.save_top_k = 1
self.task = None
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
self.mode = 'min'
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
self.mode = 'max'
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.best = -np.Inf
self.mode = 'max'
else:
self.monitor_op = np.less
self.best = np.Inf
self.mode = 'min'
if os.path.exists(f'{self.filepath}/best_valid.npy'):
self.best = np.load(f'{self.filepath}/best_valid.npy')[0]
def get_all_ckpts(self):
return sorted(glob.glob(f'{self.filepath}/{self.prefix}_ckpt_steps_*.ckpt'),
key=lambda x: -int(re.findall('.*steps\_(\d+)\.ckpt', x)[0]))
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epochs_since_last_check += 1
best_filepath = f'{self.filepath}/{self.prefix}_ckpt_best.pt'
if self.epochs_since_last_check >= self.period:
self.epochs_since_last_check = 0
filepath = f'{self.filepath}/{self.prefix}_ckpt_steps_{self.task.global_step}.ckpt'
if self.verbose > 0:
logging.info(f'Epoch {epoch:05d}@{self.task.global_step}: saving model to {filepath}')
self._save_model(filepath)
for old_ckpt in self.get_all_ckpts()[self.num_ckpt_keep:]:
subprocess.check_call(f'rm -rf "{old_ckpt}"', shell=True)
if self.verbose > 0:
logging.info(f'Delete ckpt: {os.path.basename(old_ckpt)}')
current = logs.get(self.monitor)
if current is not None and self.save_best:
if self.monitor_op(current, self.best):
self.best = current
if self.verbose > 0:
logging.info(
f'Epoch {epoch:05d}@{self.task.global_step}: {self.monitor} reached'
f' {current:0.5f} (best {self.best:0.5f}), saving model to'
f' {best_filepath} as top 1')
self._save_model(best_filepath)
np.save(f'{self.filepath}/best_valid.npy', [self.best])
class BaseTrainer:
def __init__(
self,
logger=True,
checkpoint_callback=True,
default_save_path=None,
gradient_clip_val=0,
process_position=0,
gpus=-1,
log_gpu_memory=None,
show_progress_bar=True,
track_grad_norm=-1,
check_val_every_n_epoch=1,
accumulate_grad_batches=1,
max_updates=1000,
min_epochs=1,
val_check_interval=1.0,
log_save_interval=100,
row_log_interval=10,
print_nan_grads=False,
weights_summary='full',
num_sanity_val_steps=5,
resume_from_checkpoint=None,
):
self.log_gpu_memory = log_gpu_memory
self.gradient_clip_val = gradient_clip_val
self.check_val_every_n_epoch = check_val_every_n_epoch
self.track_grad_norm = track_grad_norm
self.on_gpu = True if (gpus and torch.cuda.is_available()) else False
self.process_position = process_position
self.weights_summary = weights_summary
self.max_updates = max_updates
self.min_epochs = min_epochs
self.num_sanity_val_steps = num_sanity_val_steps
self.print_nan_grads = print_nan_grads
self.resume_from_checkpoint = resume_from_checkpoint
self.default_save_path = default_save_path
# training bookeeping
self.total_batch_idx = 0
self.running_loss = []
self.avg_loss = 0
self.batch_idx = 0
self.tqdm_metrics = {}
self.callback_metrics = {}
self.num_val_batches = 0
self.num_training_batches = 0
self.num_test_batches = 0
self.get_train_dataloader = None
self.get_test_dataloaders = None
self.get_val_dataloaders = None
self.is_iterable_train_dataloader = False
# training state
self.model = None
self.testing = False
self.disable_validation = False
self.lr_schedulers = []
self.optimizers = None
self.global_step = 0
self.current_epoch = 0
self.total_batches = 0
# configure checkpoint callback
self.checkpoint_callback = checkpoint_callback
self.checkpoint_callback.save_function = self.save_checkpoint
self.weights_save_path = self.checkpoint_callback.filepath
# accumulated grads
self.configure_accumulated_gradients(accumulate_grad_batches)
# allow int, string and gpu list
self.data_parallel_device_ids = [
int(x) for x in os.environ.get("CUDA_VISIBLE_DEVICES", "").split(",") if x != '']
if len(self.data_parallel_device_ids) == 0:
self.root_gpu = None
self.on_gpu = False
else:
self.root_gpu = self.data_parallel_device_ids[0]
self.on_gpu = True
# distributed backend choice
self.use_ddp = False
self.use_dp = False
self.single_gpu = False
self.distributed_backend = 'ddp' if self.num_gpus > 0 else 'dp'
self.set_distributed_mode(self.distributed_backend)
self.proc_rank = 0
self.world_size = 1
self.node_rank = 0
# can't init progress bar here because starting a new process
# means the progress_bar won't survive pickling
self.show_progress_bar = show_progress_bar
# logging
self.log_save_interval = log_save_interval
self.val_check_interval = val_check_interval
self.logger = logger
self.logger.rank = 0
self.row_log_interval = row_log_interval
@property
def num_gpus(self):
gpus = self.data_parallel_device_ids
if gpus is None:
return 0
else:
return len(gpus)
@property
def data_parallel(self):
return self.use_dp or self.use_ddp
def get_model(self):
is_dp_module = isinstance(self.model, (DDP, DP))
model = self.model.module if is_dp_module else self.model
return model
# -----------------------------
# MODEL TRAINING
# -----------------------------
def fit(self, model):
if self.use_ddp:
mp.spawn(self.ddp_train, nprocs=self.num_gpus, args=(model,))
else:
model.model = model.build_model()
if not self.testing:
self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers())
if self.use_dp:
model.cuda(self.root_gpu)
model = DP(model, device_ids=self.data_parallel_device_ids)
elif self.single_gpu:
model.cuda(self.root_gpu)
self.run_pretrain_routine(model)
return 1
def init_optimizers(self, optimizers):
# single optimizer
if isinstance(optimizers, Optimizer):
return [optimizers], []
# two lists
elif len(optimizers) == 2 and isinstance(optimizers[0], list):
optimizers, lr_schedulers = optimizers
return optimizers, lr_schedulers
# single list or tuple
elif isinstance(optimizers, list) or isinstance(optimizers, tuple):
return optimizers, []
def run_pretrain_routine(self, model):
"""Sanity check a few things before starting actual training.
:param model:
"""
ref_model = model
if self.data_parallel:
ref_model = model.module
# give model convenience properties
ref_model.trainer = self
# set local properties on the model
self.copy_trainer_model_properties(ref_model)
# link up experiment object
if self.logger is not None:
ref_model.logger = self.logger
self.logger.save()
if self.use_ddp:
dist.barrier()
# set up checkpoint callback
# self.configure_checkpoint_callback()
# transfer data loaders from model
self.get_dataloaders(ref_model)
# track model now.
# if cluster resets state, the model will update with the saved weights
self.model = model
# restore training and model before hpc call
self.restore_weights(model)
# when testing requested only run test and return
if self.testing:
self.run_evaluation(test=True)
return
# check if we should run validation during training
self.disable_validation = self.num_val_batches == 0
# run tiny validation (if validation defined)
# to make sure program won't crash during val
ref_model.on_sanity_check_start()
ref_model.on_train_start()
if not self.disable_validation and self.num_sanity_val_steps > 0:
# init progress bars for validation sanity check
pbar = tqdm.tqdm(desc='Validation sanity check',
total=self.num_sanity_val_steps * len(self.get_val_dataloaders()),
leave=False, position=2 * self.process_position,
disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch')
self.main_progress_bar = pbar
# dummy validation progress bar
self.val_progress_bar = tqdm.tqdm(disable=True)
self.evaluate(model, self.get_val_dataloaders(), self.num_sanity_val_steps, self.testing)
# close progress bars
self.main_progress_bar.close()
self.val_progress_bar.close()
# init progress bar
pbar = tqdm.tqdm(leave=True, position=2 * self.process_position,
disable=not self.show_progress_bar, dynamic_ncols=True, unit='batch',
file=sys.stdout)
self.main_progress_bar = pbar
# clear cache before training
if self.on_gpu:
torch.cuda.empty_cache()
# CORE TRAINING LOOP
self.train()
def test(self, model):
self.testing = True
self.fit(model)
@property
def training_tqdm_dict(self):
tqdm_dict = {
'step': '{}'.format(self.global_step),
}
tqdm_dict.update(self.tqdm_metrics)
return tqdm_dict
# --------------------
# restore ckpt
# --------------------
def restore_weights(self, model):
"""
To restore weights we have two cases.
First, attempt to restore hpc weights. If successful, don't restore
other weights.
Otherwise, try to restore actual weights
:param model:
:return:
"""
# clear cache before restore
if self.on_gpu:
torch.cuda.empty_cache()
if self.resume_from_checkpoint is not None:
self.restore(self.resume_from_checkpoint, on_gpu=self.on_gpu)
else:
# restore weights if same exp version
self.restore_state_if_checkpoint_exists(model)
# wait for all models to restore weights
if self.use_ddp:
# wait for all processes to catch up
dist.barrier()
# clear cache after restore
if self.on_gpu:
torch.cuda.empty_cache()
def restore_state_if_checkpoint_exists(self, model):
did_restore = False
# do nothing if there's not dir or callback
no_ckpt_callback = (self.checkpoint_callback is None) or (not self.checkpoint_callback)
if no_ckpt_callback or not os.path.exists(self.checkpoint_callback.filepath):
return did_restore
# restore trainer state and model if there is a weight for this experiment
last_steps = -1
last_ckpt_name = None
# find last epoch
checkpoints = os.listdir(self.checkpoint_callback.filepath)
for name in checkpoints:
if '.ckpt' in name and not name.endswith('part'):
if 'steps_' in name:
steps = name.split('steps_')[1]
steps = int(re.sub('[^0-9]', '', steps))
if steps > last_steps:
last_steps = steps
last_ckpt_name = name
# restore last checkpoint
if last_ckpt_name is not None:
last_ckpt_path = os.path.join(self.checkpoint_callback.filepath, last_ckpt_name)
self.restore(last_ckpt_path, self.on_gpu)
logging.info(f'model and trainer restored from checkpoint: {last_ckpt_path}')
did_restore = True
return did_restore
def restore(self, checkpoint_path, on_gpu):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
# load model state
model = self.get_model()
# load the state_dict on the model automatically
model.load_state_dict(checkpoint['state_dict'], strict=False)
if on_gpu:
model.cuda(self.root_gpu)
# load training state (affects trainer only)
self.restore_training_state(checkpoint)
model.global_step = self.global_step
del checkpoint
try:
if dist.is_initialized() and dist.get_rank() > 0:
return
except Exception as e:
print(e)
return
def restore_training_state(self, checkpoint):
"""
Restore trainer state.
Model will get its change to update
:param checkpoint:
:return:
"""
if self.checkpoint_callback is not None and self.checkpoint_callback is not False:
self.checkpoint_callback.best = checkpoint['checkpoint_callback_best']
self.global_step = checkpoint['global_step']
self.current_epoch = checkpoint['epoch']
if self.testing:
return
# restore the optimizers
optimizer_states = checkpoint['optimizer_states']
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
if optimizer is None:
return
optimizer.load_state_dict(opt_state)
# move optimizer to GPU 1 weight at a time
# avoids OOM
if self.root_gpu is not None:
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.cuda(self.root_gpu)
# restore the lr schedulers
lr_schedulers = checkpoint['lr_schedulers']
for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers):
scheduler.load_state_dict(lrs_state)
# --------------------
# MODEL SAVE CHECKPOINT
# --------------------
def _atomic_save(self, checkpoint, filepath):
"""Saves a checkpoint atomically, avoiding the creation of incomplete checkpoints.
This will create a temporary checkpoint with a suffix of ``.part``, then copy it to the final location once
saving is finished.
Args:
checkpoint (object): The object to save.
Built to be used with the ``dump_checkpoint`` method, but can deal with anything which ``torch.save``
accepts.
filepath (str|pathlib.Path): The path to which the checkpoint will be saved.
This points to the file that the checkpoint will be stored in.
"""
tmp_path = str(filepath) + ".part"
torch.save(checkpoint, tmp_path)
os.replace(tmp_path, filepath)
def save_checkpoint(self, filepath):
checkpoint = self.dump_checkpoint()
self._atomic_save(checkpoint, filepath)
def dump_checkpoint(self):
checkpoint = {
'epoch': self.current_epoch,
'global_step': self.global_step
}
if self.checkpoint_callback is not None and self.checkpoint_callback is not False:
checkpoint['checkpoint_callback_best'] = self.checkpoint_callback.best
# save optimizers
optimizer_states = []
for i, optimizer in enumerate(self.optimizers):
if optimizer is not None:
optimizer_states.append(optimizer.state_dict())
checkpoint['optimizer_states'] = optimizer_states
# save lr schedulers
lr_schedulers = []
for i, scheduler in enumerate(self.lr_schedulers):
lr_schedulers.append(scheduler.state_dict())
checkpoint['lr_schedulers'] = lr_schedulers
# add the hparams and state_dict from the model
model = self.get_model()
checkpoint['state_dict'] = model.state_dict()
# give the model a chance to add a few things
model.on_save_checkpoint(checkpoint)
return checkpoint
def copy_trainer_model_properties(self, model):
if isinstance(model, DP):
ref_model = model.module
elif isinstance(model, DDP):
ref_model = model.module
else:
ref_model = model
for m in [model, ref_model]:
m.trainer = self
m.on_gpu = self.on_gpu
m.use_dp = self.use_dp
m.use_ddp = self.use_ddp
m.testing = self.testing
m.single_gpu = self.single_gpu
def transfer_batch_to_gpu(self, batch, gpu_id):
# base case: object can be directly moved using `cuda` or `to`
if callable(getattr(batch, 'cuda', None)):
return batch.cuda(gpu_id, non_blocking=True)
elif callable(getattr(batch, 'to', None)):
return batch.to(torch.device('cuda', gpu_id), non_blocking=True)
# when list
elif isinstance(batch, list):
for i, x in enumerate(batch):
batch[i] = self.transfer_batch_to_gpu(x, gpu_id)
return batch
# when tuple
elif isinstance(batch, tuple):
batch = list(batch)
for i, x in enumerate(batch):
batch[i] = self.transfer_batch_to_gpu(x, gpu_id)
return tuple(batch)
# when dict
elif isinstance(batch, dict):
for k, v in batch.items():
batch[k] = self.transfer_batch_to_gpu(v, gpu_id)
return batch
# nothing matches, return the value as is without transform
return batch
def set_distributed_mode(self, distributed_backend):
# skip for CPU
if self.num_gpus == 0:
return
# single GPU case
# in single gpu case we allow ddp so we can train on multiple
# nodes, 1 gpu per node
elif self.num_gpus == 1:
self.single_gpu = True
self.use_dp = False
self.use_ddp = False
self.root_gpu = 0
self.data_parallel_device_ids = [0]
else:
if distributed_backend is not None:
self.use_dp = distributed_backend == 'dp'
self.use_ddp = distributed_backend == 'ddp'
elif distributed_backend is None:
self.use_dp = True
self.use_ddp = False
logging.info(f'gpu available: {torch.cuda.is_available()}, used: {self.on_gpu}')
def ddp_train(self, gpu_idx, model):
"""
Entry point into a DP thread
:param gpu_idx:
:param model:
:param cluster_obj:
:return:
"""
# otherwise default to node rank 0
self.node_rank = 0
# show progressbar only on progress_rank 0
self.show_progress_bar = self.show_progress_bar and self.node_rank == 0 and gpu_idx == 0
# determine which process we are and world size
if self.use_ddp:
self.proc_rank = self.node_rank * self.num_gpus + gpu_idx
self.world_size = self.num_gpus
# let the exp know the rank to avoid overwriting logs
if self.logger is not None:
self.logger.rank = self.proc_rank
# set up server using proc 0's ip address
# try to init for 20 times at max in case ports are taken
# where to store ip_table
model.trainer = self
model.init_ddp_connection(self.proc_rank, self.world_size)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
model.model = model.build_model()
if not self.testing:
self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers())
# MODEL
# copy model to each gpu
if self.distributed_backend == 'ddp':
torch.cuda.set_device(gpu_idx)
model.cuda(gpu_idx)
# set model properties before going into wrapper
self.copy_trainer_model_properties(model)
# override root GPU
self.root_gpu = gpu_idx
if self.distributed_backend == 'ddp':
device_ids = [gpu_idx]
else:
device_ids = None
# allow user to configure ddp
model = model.configure_ddp(model, device_ids)
# continue training routine
self.run_pretrain_routine(model)
def resolve_root_node_address(self, root_node):
if '[' in root_node:
name = root_node.split('[')[0]
number = root_node.split(',')[0]
if '-' in number:
number = number.split('-')[0]
number = re.sub('[^0-9]', '', number)
root_node = name + number
return root_node
def log_metrics(self, metrics, grad_norm_dic, step=None):
"""Logs the metric dict passed in.
:param metrics:
:param grad_norm_dic:
"""
# added metrics by Lightning for convenience
metrics['epoch'] = self.current_epoch
# add norms
metrics.update(grad_norm_dic)
# turn all tensors to scalars
scalar_metrics = self.metrics_to_scalars(metrics)
step = step if step is not None else self.global_step
# log actual metrics
if self.proc_rank == 0 and self.logger is not None:
self.logger.log_metrics(scalar_metrics, step=step)
self.logger.save()
def add_tqdm_metrics(self, metrics):
for k, v in metrics.items():
if type(v) is torch.Tensor:
v = v.item()
self.tqdm_metrics[k] = v
def metrics_to_scalars(self, metrics):
new_metrics = {}
for k, v in metrics.items():
if isinstance(v, torch.Tensor):
v = v.item()
if type(v) is dict:
v = self.metrics_to_scalars(v)
new_metrics[k] = v
return new_metrics
def process_output(self, output, train=False):
"""Reduces output according to the training mode.
Separates loss from logging and tqdm metrics
:param output:
:return:
"""
# ---------------
# EXTRACT CALLBACK KEYS
# ---------------
# all keys not progress_bar or log are candidates for callbacks
callback_metrics = {}
for k, v in output.items():
if k not in ['progress_bar', 'log', 'hiddens']:
callback_metrics[k] = v
if train and self.use_dp:
num_gpus = self.num_gpus
callback_metrics = self.reduce_distributed_output(callback_metrics, num_gpus)
for k, v in callback_metrics.items():
if isinstance(v, torch.Tensor):
callback_metrics[k] = v.item()
# ---------------
# EXTRACT PROGRESS BAR KEYS
# ---------------
try:
progress_output = output['progress_bar']
# reduce progress metrics for tqdm when using dp
if train and self.use_dp:
num_gpus = self.num_gpus
progress_output = self.reduce_distributed_output(progress_output, num_gpus)
progress_bar_metrics = progress_output
except Exception:
progress_bar_metrics = {}
# ---------------
# EXTRACT LOGGING KEYS
# ---------------
# extract metrics to log to experiment
try:
log_output = output['log']
# reduce progress metrics for tqdm when using dp
if train and self.use_dp:
num_gpus = self.num_gpus
log_output = self.reduce_distributed_output(log_output, num_gpus)
log_metrics = log_output
except Exception:
log_metrics = {}
# ---------------
# EXTRACT LOSS
# ---------------
# if output dict doesn't have the keyword loss
# then assume the output=loss if scalar
loss = None
if train:
try:
loss = output['loss']
except Exception:
if type(output) is torch.Tensor:
loss = output
else:
raise RuntimeError(
'No `loss` value in the dictionary returned from `model.training_step()`.'
)
# when using dp need to reduce the loss
if self.use_dp:
loss = self.reduce_distributed_output(loss, self.num_gpus)
# ---------------
# EXTRACT HIDDEN
# ---------------
hiddens = output.get('hiddens')
# use every metric passed in as a candidate for callback
callback_metrics.update(progress_bar_metrics)
callback_metrics.update(log_metrics)
# convert tensors to numpy
for k, v in callback_metrics.items():
if isinstance(v, torch.Tensor):
callback_metrics[k] = v.item()
return loss, progress_bar_metrics, log_metrics, callback_metrics, hiddens
def reduce_distributed_output(self, output, num_gpus):
if num_gpus <= 1:
return output
# when using DP, we get one output per gpu
# average outputs and return
if type(output) is torch.Tensor:
return output.mean()
for k, v in output.items():
# recurse on nested dics
if isinstance(output[k], dict):
output[k] = self.reduce_distributed_output(output[k], num_gpus)
# do nothing when there's a scalar
elif isinstance(output[k], torch.Tensor) and output[k].dim() == 0:
pass
# reduce only metrics that have the same number of gpus
elif output[k].size(0) == num_gpus:
reduced = torch.mean(output[k])
output[k] = reduced
return output
def clip_gradients(self):
if self.gradient_clip_val > 0:
model = self.get_model()
torch.nn.utils.clip_grad_norm_(model.parameters(), self.gradient_clip_val)
def print_nan_gradients(self):
model = self.get_model()
for param in model.parameters():
if (param.grad is not None) and torch.isnan(param.grad.float()).any():
logging.info(param, param.grad)
def configure_accumulated_gradients(self, accumulate_grad_batches):
self.accumulate_grad_batches = None
if isinstance(accumulate_grad_batches, dict):
self.accumulation_scheduler = GradientAccumulationScheduler(accumulate_grad_batches)
elif isinstance(accumulate_grad_batches, int):
schedule = {1: accumulate_grad_batches}
self.accumulation_scheduler = GradientAccumulationScheduler(schedule)
else:
raise TypeError("Gradient accumulation supports only int and dict types")
def get_dataloaders(self, model):
if not self.testing:
self.init_train_dataloader(model)
self.init_val_dataloader(model)
else:
self.init_test_dataloader(model)
if self.use_ddp:
dist.barrier()
if not self.testing:
self.get_train_dataloader()
self.get_val_dataloaders()
else:
self.get_test_dataloaders()
def init_train_dataloader(self, model):
self.fisrt_epoch = True
self.get_train_dataloader = model.train_dataloader
if isinstance(self.get_train_dataloader(), torch.utils.data.DataLoader):
self.num_training_batches = len(self.get_train_dataloader())
self.num_training_batches = int(self.num_training_batches)
else:
self.num_training_batches = float('inf')
self.is_iterable_train_dataloader = True
if isinstance(self.val_check_interval, int):
self.val_check_batch = self.val_check_interval
else:
self._percent_range_check('val_check_interval')
self.val_check_batch = int(self.num_training_batches * self.val_check_interval)
self.val_check_batch = max(1, self.val_check_batch)
def init_val_dataloader(self, model):
self.get_val_dataloaders = model.val_dataloader
self.num_val_batches = 0
if self.get_val_dataloaders() is not None:
if isinstance(self.get_val_dataloaders()[0], torch.utils.data.DataLoader):
self.num_val_batches = sum(len(dataloader) for dataloader in self.get_val_dataloaders())
self.num_val_batches = int(self.num_val_batches)
else:
self.num_val_batches = float('inf')
def init_test_dataloader(self, model):
self.get_test_dataloaders = model.test_dataloader
if self.get_test_dataloaders() is not None:
if isinstance(self.get_test_dataloaders()[0], torch.utils.data.DataLoader):
self.num_test_batches = sum(len(dataloader) for dataloader in self.get_test_dataloaders())
self.num_test_batches = int(self.num_test_batches)
else:
self.num_test_batches = float('inf')
def evaluate(self, model, dataloaders, max_batches, test=False):
"""Run evaluation code.
:param model: PT model
:param dataloaders: list of PT dataloaders
:param max_batches: Scalar
:param test: boolean
:return:
"""
# enable eval mode
model.zero_grad()
model.eval()
# copy properties for forward overrides
self.copy_trainer_model_properties(model)
# disable gradients to save memory
torch.set_grad_enabled(False)
if test:
self.get_model().test_start()
# bookkeeping
outputs = []
# run training
for dataloader_idx, dataloader in enumerate(dataloaders):
dl_outputs = []
for batch_idx, batch in enumerate(dataloader):
if batch is None: # pragma: no cover
continue
# stop short when on fast_dev_run (sets max_batch=1)
if batch_idx >= max_batches:
break
# -----------------
# RUN EVALUATION STEP
# -----------------
output = self.evaluation_forward(model,
batch,
batch_idx,
dataloader_idx,
test)
# track outputs for collation
dl_outputs.append(output)
# batch done
if test:
self.test_progress_bar.update(1)
else:
self.val_progress_bar.update(1)
outputs.append(dl_outputs)
# with a single dataloader don't pass an array
if len(dataloaders) == 1:
outputs = outputs[0]
# give model a chance to do something with the outputs (and method defined)
model = self.get_model()
if test:
eval_results_ = model.test_end(outputs)
else:
eval_results_ = model.validation_end(outputs)
eval_results = eval_results_
# enable train mode again
model.train()
# enable gradients to save memory
torch.set_grad_enabled(True)
return eval_results
def run_evaluation(self, test=False):
# when testing make sure user defined a test step
model = self.get_model()
model.on_pre_performance_check()
# select dataloaders
if test:
dataloaders = self.get_test_dataloaders()
max_batches = self.num_test_batches
else:
# val
dataloaders = self.get_val_dataloaders()
max_batches = self.num_val_batches
# init validation or test progress bar
# main progress bar will already be closed when testing so initial position is free
position = 2 * self.process_position + (not test)
desc = 'Testing' if test else 'Validating'
pbar = tqdm.tqdm(desc=desc, total=max_batches, leave=test, position=position,
disable=not self.show_progress_bar, dynamic_ncols=True,
unit='batch', file=sys.stdout)
setattr(self, f'{"test" if test else "val"}_progress_bar', pbar)
# run evaluation
eval_results = self.evaluate(self.model,
dataloaders,
max_batches,
test)
if eval_results is not None:
_, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(
eval_results)
# add metrics to prog bar
self.add_tqdm_metrics(prog_bar_metrics)
# log metrics
self.log_metrics(log_metrics, {})
# track metrics for callbacks
self.callback_metrics.update(callback_metrics)
# hook
model.on_post_performance_check()
# add model specific metrics
tqdm_metrics = self.training_tqdm_dict
if not test:
self.main_progress_bar.set_postfix(**tqdm_metrics)
# close progress bar
if test:
self.test_progress_bar.close()
else:
self.val_progress_bar.close()
# model checkpointing
if self.proc_rank == 0 and self.checkpoint_callback is not None and not test:
self.checkpoint_callback.on_epoch_end(epoch=self.current_epoch,
logs=self.callback_metrics)
def evaluation_forward(self, model, batch, batch_idx, dataloader_idx, test=False):
# make dataloader_idx arg in validation_step optional
args = [batch, batch_idx]
if test and len(self.get_test_dataloaders()) > 1:
args.append(dataloader_idx)
elif not test and len(self.get_val_dataloaders()) > 1:
args.append(dataloader_idx)
# handle DP, DDP forward
if self.use_ddp or self.use_dp:
output = model(*args)
return output
# single GPU
if self.single_gpu:
# for single GPU put inputs on gpu manually
root_gpu = 0
if isinstance(self.data_parallel_device_ids, list):
root_gpu = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(batch, root_gpu)
args[0] = batch
# CPU
if test:
output = model.test_step(*args)
else:
output = model.validation_step(*args)
return output
def train(self):
model = self.get_model()
# run all epochs
for epoch in range(self.current_epoch, 1000000):
# set seed for distributed sampler (enables shuffling for each epoch)
if self.use_ddp and hasattr(self.get_train_dataloader().sampler, 'set_epoch'):
self.get_train_dataloader().sampler.set_epoch(epoch)
# get model
model = self.get_model()
# update training progress in trainer and model
model.current_epoch = epoch
self.current_epoch = epoch
total_val_batches = 0
if not self.disable_validation:
# val can be checked multiple times in epoch
is_val_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0
val_checks_per_epoch = self.num_training_batches // self.val_check_batch
val_checks_per_epoch = val_checks_per_epoch if is_val_epoch else 0
total_val_batches = self.num_val_batches * val_checks_per_epoch
# total batches includes multiple val checks
self.total_batches = self.num_training_batches + total_val_batches
self.batch_loss_value = 0 # accumulated grads
if self.is_iterable_train_dataloader:
# for iterable train loader, the progress bar never ends
num_iterations = None
else:
num_iterations = self.total_batches
# reset progress bar
# .reset() doesn't work on disabled progress bar so we should check
desc = f'Epoch {epoch + 1}' if not self.is_iterable_train_dataloader else ''
self.main_progress_bar.set_description(desc)
# changing gradient according accumulation_scheduler
self.accumulation_scheduler.on_epoch_begin(epoch, self)
# -----------------
# RUN TNG EPOCH
# -----------------
self.run_training_epoch()
# update LR schedulers
if self.lr_schedulers is not None:
for lr_scheduler in self.lr_schedulers:
lr_scheduler.step(epoch=self.current_epoch)
self.main_progress_bar.close()
model.on_train_end()
if self.logger is not None:
self.logger.finalize("success")
def run_training_epoch(self):
# before epoch hook
if self.is_function_implemented('on_epoch_start'):
model = self.get_model()
model.on_epoch_start()
# run epoch
for batch_idx, batch in enumerate(self.get_train_dataloader()):
# stop epoch if we limited the number of training batches
if batch_idx >= self.num_training_batches:
break
self.batch_idx = batch_idx
model = self.get_model()
model.global_step = self.global_step
# ---------------
# RUN TRAIN STEP
# ---------------
output = self.run_training_batch(batch, batch_idx)
batch_result, grad_norm_dic, batch_step_metrics = output
# when returning -1 from train_step, we end epoch early
early_stop_epoch = batch_result == -1
# ---------------
# RUN VAL STEP
# ---------------
should_check_val = (
not self.disable_validation and self.global_step % self.val_check_batch == 0 and not self.fisrt_epoch)
self.fisrt_epoch = False
if should_check_val:
self.run_evaluation(test=self.testing)
# when logs should be saved
should_save_log = (batch_idx + 1) % self.log_save_interval == 0 or early_stop_epoch
if should_save_log:
if self.proc_rank == 0 and self.logger is not None:
self.logger.save()
# when metrics should be logged
should_log_metrics = batch_idx % self.row_log_interval == 0 or early_stop_epoch
if should_log_metrics:
# logs user requested information to logger
self.log_metrics(batch_step_metrics, grad_norm_dic)
self.global_step += 1
self.total_batch_idx += 1
# end epoch early
# stop when the flag is changed or we've gone past the amount
# requested in the batches
if early_stop_epoch:
break
if self.global_step > self.max_updates:
print("| Training end..")
exit()
# epoch end hook
if self.is_function_implemented('on_epoch_end'):
model = self.get_model()
model.on_epoch_end()
def run_training_batch(self, batch, batch_idx):
# track grad norms
grad_norm_dic = {}
# track all metrics for callbacks
all_callback_metrics = []
# track metrics to log
all_log_metrics = []
if batch is None:
return 0, grad_norm_dic, {}
# hook
if self.is_function_implemented('on_batch_start'):
model_ref = self.get_model()
response = model_ref.on_batch_start(batch)
if response == -1:
return -1, grad_norm_dic, {}
splits = [batch]
self.hiddens = None
for split_idx, split_batch in enumerate(splits):
self.split_idx = split_idx
# call training_step once per optimizer
for opt_idx, optimizer in enumerate(self.optimizers):
if optimizer is None:
continue
# make sure only the gradients of the current optimizer's paramaters are calculated
# in the training step to prevent dangling gradients in multiple-optimizer setup.
if len(self.optimizers) > 1:
for param in self.get_model().parameters():
param.requires_grad = False
for group in optimizer.param_groups:
for param in group['params']:
param.requires_grad = True
# wrap the forward step in a closure so second order methods work
def optimizer_closure():
# forward pass
output = self.training_forward(
split_batch, batch_idx, opt_idx, self.hiddens)
closure_loss = output[0]
progress_bar_metrics = output[1]
log_metrics = output[2]
callback_metrics = output[3]
self.hiddens = output[4]
if closure_loss is None:
return None
# accumulate loss
# (if accumulate_grad_batches = 1 no effect)
closure_loss = closure_loss / self.accumulate_grad_batches
# backward pass
model_ref = self.get_model()
if closure_loss.requires_grad:
model_ref.backward(closure_loss, optimizer)
# track metrics for callbacks
all_callback_metrics.append(callback_metrics)
# track progress bar metrics
self.add_tqdm_metrics(progress_bar_metrics)
all_log_metrics.append(log_metrics)
# insert after step hook
if self.is_function_implemented('on_after_backward'):
model_ref = self.get_model()
model_ref.on_after_backward()
return closure_loss
# calculate loss
loss = optimizer_closure()
if loss is None:
continue
# nan grads
if self.print_nan_grads:
self.print_nan_gradients()
# track total loss for logging (avoid mem leaks)
self.batch_loss_value += loss.item()
# gradient update with accumulated gradients
if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:
# track gradient norms when requested
if batch_idx % self.row_log_interval == 0:
if self.track_grad_norm > 0:
model = self.get_model()
grad_norm_dic = model.grad_norm(
self.track_grad_norm)
# clip gradients
self.clip_gradients()
# calls .step(), .zero_grad()
# override function to modify this behavior
model = self.get_model()
model.optimizer_step(self.current_epoch, batch_idx, optimizer, opt_idx)
# calculate running loss for display
self.running_loss.append(self.batch_loss_value)
self.batch_loss_value = 0
self.avg_loss = np.mean(self.running_loss[-100:])
# activate batch end hook
if self.is_function_implemented('on_batch_end'):
model = self.get_model()
model.on_batch_end()
# update progress bar
self.main_progress_bar.update(1)
self.main_progress_bar.set_postfix(**self.training_tqdm_dict)
# collapse all metrics into one dict
all_log_metrics = {k: v for d in all_log_metrics for k, v in d.items()}
# track all metrics for callbacks
self.callback_metrics.update({k: v for d in all_callback_metrics for k, v in d.items()})
return 0, grad_norm_dic, all_log_metrics
def training_forward(self, batch, batch_idx, opt_idx, hiddens):
"""
Handle forward for each training case (distributed, single gpu, etc...)
:param batch:
:param batch_idx:
:return:
"""
# ---------------
# FORWARD
# ---------------
# enable not needing to add opt_idx to training_step
args = [batch, batch_idx, opt_idx]
# distributed forward
if self.use_ddp or self.use_dp:
output = self.model(*args)
# single GPU forward
elif self.single_gpu:
gpu_id = 0
if isinstance(self.data_parallel_device_ids, list):
gpu_id = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(copy.copy(batch), gpu_id)
args[0] = batch
output = self.model.training_step(*args)
# CPU forward
else:
output = self.model.training_step(*args)
# allow any mode to define training_end
model_ref = self.get_model()
output_ = model_ref.training_end(output)
if output_ is not None:
output = output_
# format and reduce outputs accordingly
output = self.process_output(output, train=True)
return output
# ---------------
# Utils
# ---------------
def is_function_implemented(self, f_name):
model = self.get_model()
f_op = getattr(model, f_name, None)
return callable(f_op)
def _percent_range_check(self, name):
value = getattr(self, name)
msg = f"`{name}` must lie in the range [0.0, 1.0], but got {value:.3f}."
if name == "val_check_interval":
msg += " If you want to disable validation set `val_percent_check` to 0.0 instead."
if not 0. <= value <= 1.:
raise ValueError(msg)
|