File size: 9,620 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from copy import deepcopy

import torch
from torch import nn
import torch.nn.functional as F
from text_to_speech.modules.commons.conv import TextConvEncoder, ConvBlocks
from text_to_speech.modules.commons.layers import Embedding
from text_to_speech.modules.commons.nar_tts_modules import PitchPredictor, DurationPredictor, LengthRegulator
from text_to_speech.modules.commons.rel_transformer import RelTransformerEncoder, BERTRelTransformerEncoder
from text_to_speech.modules.commons.rnn import TacotronEncoder, RNNEncoder, DecoderRNN
from text_to_speech.modules.commons.transformer import FastSpeechEncoder, FastSpeechDecoder
from text_to_speech.modules.commons.wavenet import WN
from text_to_speech.modules.tts.commons.align_ops import clip_mel2token_to_multiple, expand_states
from text_to_speech.utils.audio.pitch.utils import denorm_f0, f0_to_coarse

FS_ENCODERS = {
    'fft': lambda hp, dict_size: FastSpeechEncoder(
        dict_size, hp['hidden_size'], hp['enc_layers'], hp['enc_ffn_kernel_size'],
        num_heads=hp['num_heads']),
    'tacotron': lambda hp, dict_size: TacotronEncoder(
        hp['hidden_size'], dict_size, hp['hidden_size'],
        K=hp['encoder_K'], num_highways=4, dropout=hp['dropout']),
    'tacotron2': lambda hp, dict_size: RNNEncoder(dict_size, hp['hidden_size']),
    'conv': lambda hp, dict_size: TextConvEncoder(dict_size, hp['hidden_size'], hp['hidden_size'],
                                                  hp['enc_dilations'], hp['enc_kernel_size'],
                                                  layers_in_block=hp['layers_in_block'],
                                                  norm_type=hp['enc_dec_norm'],
                                                  post_net_kernel=hp.get('enc_post_net_kernel', 3)),
    'rel_fft': lambda hp, dict_size: RelTransformerEncoder(
        dict_size, hp['hidden_size'], hp['hidden_size'],
        hp['ffn_hidden_size'], hp['num_heads'], hp['enc_layers'],
        hp['enc_ffn_kernel_size'], hp['dropout'], prenet=hp['enc_prenet'], pre_ln=hp['enc_pre_ln']),
}

FS_DECODERS = {
    'fft': lambda hp: FastSpeechDecoder(
        hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']),
    'rnn': lambda hp: DecoderRNN(hp['hidden_size'], hp['decoder_rnn_dim'], hp['dropout']),
    'conv': lambda hp: ConvBlocks(hp['hidden_size'], hp['hidden_size'], hp['dec_dilations'],
                                  hp['dec_kernel_size'], layers_in_block=hp['layers_in_block'],
                                  norm_type=hp['enc_dec_norm'], dropout=hp['dropout'],
                                  post_net_kernel=hp.get('dec_post_net_kernel', 3)),
    'wn': lambda hp: WN(hp['hidden_size'], kernel_size=5, dilation_rate=1, n_layers=hp['dec_layers'],
                        is_BTC=True),
}


class FastSpeech(nn.Module):
    def __init__(self, dict_size, hparams, out_dims=None):
        super().__init__()
        self.hparams = deepcopy(hparams)
        self.enc_layers = hparams['enc_layers']
        self.dec_layers = hparams['dec_layers']
        self.hidden_size = hparams['hidden_size']
        if hparams.get("use_bert") is True:
            self.ph_encoder = BERTRelTransformerEncoder(dict_size, hparams['hidden_size'], hparams['hidden_size'],
                hparams['ffn_hidden_size'], hparams['num_heads'], hparams['enc_layers'],
                hparams['enc_ffn_kernel_size'], hparams['dropout'], prenet=hparams['enc_prenet'], pre_ln=hparams['enc_pre_ln'])
        else:
            self.ph_encoder = FS_ENCODERS[hparams['encoder_type']](hparams, dict_size)
        self.decoder = FS_DECODERS[hparams['decoder_type']](hparams)
        self.out_dims = hparams['audio_num_mel_bins'] if out_dims is None else out_dims
        self.mel_out = nn.Linear(self.hidden_size, self.out_dims, bias=True)
        if hparams['use_spk_id']:
            self.spk_id_proj = Embedding(hparams['num_spk'], self.hidden_size)
        if hparams['use_spk_embed']:
            self.spk_embed_proj = nn.Linear(256, self.hidden_size, bias=True)
        predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
        self.dur_predictor = DurationPredictor(
            self.hidden_size,
            n_chans=predictor_hidden,
            n_layers=hparams['dur_predictor_layers'],
            dropout_rate=hparams['predictor_dropout'],
            kernel_size=hparams['dur_predictor_kernel'])
        self.length_regulator = LengthRegulator()
        if hparams['use_pitch_embed']:
            self.pitch_embed = Embedding(300, self.hidden_size, 0)
            self.pitch_predictor = PitchPredictor(
                self.hidden_size, n_chans=predictor_hidden,
                n_layers=5, dropout_rate=0.1, odim=2,
                kernel_size=hparams['predictor_kernel'])
        if hparams['dec_inp_add_noise']:
            self.z_channels = hparams['z_channels']
            self.dec_inp_noise_proj = nn.Linear(self.hidden_size + self.z_channels, self.hidden_size)

    def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None,
                f0=None, uv=None, infer=False, **kwargs):
        ret = {}
        src_nonpadding = (txt_tokens > 0).float()[:, :, None]
        style_embed = self.forward_style_embed(spk_embed, spk_id)

        use_bert = self.hparams.get("use_bert") is True
        if use_bert:
            encoder_out = self.encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=kwargs['ph2word'],
                ret=ret) * src_nonpadding + style_embed
        else:
            encoder_out = self.encoder(txt_tokens) * src_nonpadding + style_embed

        # add dur
        dur_inp = (encoder_out + style_embed) * src_nonpadding
        mel2ph = self.forward_dur(dur_inp, mel2ph, txt_tokens, ret)
        tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
        decoder_inp = expand_states(encoder_out, mel2ph)

        # add pitch embed
        if self.hparams['use_pitch_embed']:
            pitch_inp = (decoder_inp + style_embed) * tgt_nonpadding
            decoder_inp = decoder_inp + self.forward_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out)

        # decoder input
        ret['decoder_inp'] = decoder_inp = (decoder_inp + style_embed) * tgt_nonpadding
        if self.hparams['dec_inp_add_noise']:
            B, T, _ = decoder_inp.shape
            z = kwargs.get('adv_z', torch.randn([B, T, self.z_channels])).to(decoder_inp.device)
            ret['adv_z'] = z
            decoder_inp = torch.cat([decoder_inp, z], -1)
            decoder_inp = self.dec_inp_noise_proj(decoder_inp) * tgt_nonpadding
        ret['mel_out'] = self.forward_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)
        return ret

    def forward_style_embed(self, spk_embed=None, spk_id=None):
        # add spk embed
        style_embed = 0
        if self.hparams['use_spk_embed']:
            style_embed = style_embed + self.spk_embed_proj(spk_embed)[:, None, :]
        if self.hparams['use_spk_id']:
            style_embed = style_embed + self.spk_id_proj(spk_id)[:, None, :]
        return style_embed

    def forward_dur(self, dur_input, mel2ph, txt_tokens, ret):
        """

        :param dur_input: [B, T_txt, H]
        :param mel2ph: [B, T_mel]
        :param txt_tokens: [B, T_txt]
        :param ret:
        :return:
        """
        src_padding = txt_tokens == 0
        if self.hparams['predictor_grad'] != 1:
            dur_input = dur_input.detach() + self.hparams['predictor_grad'] * (dur_input - dur_input.detach())
        dur = self.dur_predictor(dur_input, src_padding)
        ret['dur'] = dur
        if mel2ph is None:
            mel2ph = self.length_regulator(dur, src_padding).detach()
        ret['mel2ph'] = mel2ph = clip_mel2token_to_multiple(mel2ph, self.hparams['frames_multiple'])
        return mel2ph

    def forward_pitch(self, decoder_inp, f0, uv, mel2ph, ret, encoder_out=None):
        if self.hparams['pitch_type'] == 'frame':
            pitch_pred_inp = decoder_inp
            pitch_padding = mel2ph == 0
        else:
            pitch_pred_inp = encoder_out
            pitch_padding = encoder_out.abs().sum(-1) == 0
            uv = None
        if self.hparams['predictor_grad'] != 1:
            pitch_pred_inp = pitch_pred_inp.detach() + \
                             self.hparams['predictor_grad'] * (pitch_pred_inp - pitch_pred_inp.detach())
        ret['pitch_pred'] = pitch_pred = self.pitch_predictor(pitch_pred_inp)
        use_uv = self.hparams['pitch_type'] == 'frame' and self.hparams['use_uv']
        if f0 is None:
            f0 = pitch_pred[:, :, 0]
            if use_uv:
                uv = pitch_pred[:, :, 1] > 0
        f0_denorm = denorm_f0(f0, uv if use_uv else None, pitch_padding=pitch_padding)
        pitch = f0_to_coarse(f0_denorm)  # start from 0 [B, T_txt]
        ret['f0_denorm'] = f0_denorm
        ret['f0_denorm_pred'] = denorm_f0(
            pitch_pred[:, :, 0], (pitch_pred[:, :, 1] > 0) if use_uv else None,
            pitch_padding=pitch_padding)
        if self.hparams['pitch_type'] == 'ph':
            pitch = torch.gather(F.pad(pitch, [1, 0]), 1, mel2ph)
            ret['f0_denorm'] = torch.gather(F.pad(ret['f0_denorm'], [1, 0]), 1, mel2ph)
            ret['f0_denorm_pred'] = torch.gather(F.pad(ret['f0_denorm_pred'], [1, 0]), 1, mel2ph)
        pitch_embed = self.pitch_embed(pitch)
        return pitch_embed

    def forward_decoder(self, decoder_inp, tgt_nonpadding, ret, infer, **kwargs):
        x = decoder_inp  # [B, T, H]
        x = self.decoder(x)
        x = self.mel_out(x)
        return x * tgt_nonpadding