Spaces:
Build error
Build error
File size: 24,198 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
import math
import torch
from torch import nn
from torch.nn import functional as F
from utils.hparams import hparams
from modules.commons.common_layers import Embedding
from utils.tts_utils import group_hidden_by_segs, expand_word2ph
import transformers
def convert_pad_shape(pad_shape):
l = pad_shape[::-1]
pad_shape = [item for sublist in l for item in sublist]
return pad_shape
def shift_1d(x):
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
return x
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
class Encoder(nn.Module):
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.,
window_size=None, block_length=None, pre_ln=False, **kwargs):
super().__init__()
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.block_length = block_length
self.pre_ln = pre_ln
self.drop = nn.Dropout(p_dropout)
self.attn_layers = nn.ModuleList()
self.norm_layers_1 = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
self.norm_layers_2 = nn.ModuleList()
for i in range(self.n_layers):
self.attn_layers.append(
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, window_size=window_size,
p_dropout=p_dropout, block_length=block_length))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
self.norm_layers_2.append(LayerNorm(hidden_channels))
if pre_ln:
self.last_ln = LayerNorm(hidden_channels)
def forward(self, x, x_mask):
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
for i in range(self.n_layers):
x = x * x_mask
x_ = x
if self.pre_ln:
x = self.norm_layers_1[i](x)
y = self.attn_layers[i](x, x, attn_mask)
y = self.drop(y)
x = x_ + y
if not self.pre_ln:
x = self.norm_layers_1[i](x)
x_ = x
if self.pre_ln:
x = self.norm_layers_2[i](x)
y = self.ffn_layers[i](x, x_mask)
y = self.drop(y)
x = x_ + y
if not self.pre_ln:
x = self.norm_layers_2[i](x)
if self.pre_ln:
x = self.last_ln(x)
x = x * x_mask
return x
class MultiHeadAttention(nn.Module):
def __init__(self, channels, out_channels, n_heads, window_size=None, heads_share=True, p_dropout=0.,
block_length=None, proximal_bias=False, proximal_init=False):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.p_dropout = p_dropout
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels ** -0.5
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
if proximal_init:
self.conv_k.weight.data.copy_(self.conv_q.weight.data)
self.conv_k.bias.data.copy_(self.conv_q.bias.data)
nn.init.xavier_uniform_(self.conv_v.weight)
def forward(self, x, c, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
if self.window_size is not None:
assert t_s == t_t, "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(query, key_relative_embeddings)
rel_logits = self._relative_position_to_absolute_position(rel_logits)
scores_local = rel_logits / math.sqrt(self.k_channels)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
scores = scores * block_mask + -1e4 * (1 - block_mask)
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length):
max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1:]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
x_flat = x.view([batch, heads, length ** 2 + length * (length - 1)])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
def forward(self, x, x_mask):
x = self.conv_1(x * x_mask)
if self.activation == "gelu":
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
return x * x_mask
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-4):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
n_dims = len(x.shape)
mean = torch.mean(x, 1, keepdim=True)
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
x = (x - mean) * torch.rsqrt(variance + self.eps)
shape = [1, -1] + [1] * (n_dims - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class ConvReluNorm(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(
nn.ReLU(),
nn.Dropout(p_dropout))
for _ in range(n_layers - 1):
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class RelTransformerEncoder(nn.Module):
def __init__(self,
n_vocab,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout=0.0,
window_size=4,
block_length=None,
prenet=True,
pre_ln=True,
):
super().__init__()
self.n_vocab = n_vocab
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.block_length = block_length
self.prenet = prenet
if n_vocab > 0:
self.emb = Embedding(n_vocab, hidden_channels, padding_idx=0)
if prenet:
self.pre = ConvReluNorm(hidden_channels, hidden_channels, hidden_channels,
kernel_size=5, n_layers=3, p_dropout=0)
self.encoder = Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout,
window_size=window_size,
block_length=block_length,
pre_ln=pre_ln,
)
def forward(self, x, x_mask=None):
if self.n_vocab > 0:
x_lengths = (x > 0).long().sum(-1)
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
else:
x_lengths = (x.abs().sum(-1) > 0).long().sum(-1)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
if self.prenet:
x = self.pre(x, x_mask)
x = self.encoder(x, x_mask)
return x.transpose(1, 2)
class Pooler(nn.Module):
"""
Parameter-free poolers to get the sentence embedding
'cls': [CLS] representation with BERT/RoBERTa's MLP pooler.
'cls_before_pooler': [CLS] representation without the original MLP pooler.
'avg': average of the last layers' hidden states at each token.
'avg_top2': average of the last two layers.
'avg_first_last': average of the first and the last layers.
"""
def __init__(self, pooler_type):
super().__init__()
self.pooler_type = pooler_type
assert self.pooler_type in ["cls", "cls_before_pooler", "avg", "avg_top2", "avg_first_last"], "unrecognized pooling type %s" % self.pooler_type
def forward(self, attention_mask, outputs):
last_hidden = outputs.last_hidden_state
pooler_output = outputs.pooler_output
hidden_states = outputs.hidden_states
if self.pooler_type in ['cls_before_pooler', 'cls']:
return last_hidden[:, 0]
elif self.pooler_type == "avg":
return ((last_hidden * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1))
elif self.pooler_type == "avg_first_last":
first_hidden = hidden_states[0]
last_hidden = hidden_states[-1]
pooled_result = ((first_hidden + last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
return pooled_result
elif self.pooler_type == "avg_top2":
second_last_hidden = hidden_states[-2]
last_hidden = hidden_states[-1]
pooled_result = ((last_hidden + second_last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
return pooled_result
else:
raise NotImplementedError
class Similarity(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
self.record = None
self.pos_avg = 0.0
self.neg_avg = 0.0
def forward(self, x, y):
sim = self.cos(x, y)
self.record = sim.detach() # [64,64]
min_size = min(self.record.shape[0], self.record.shape[1]) # 64
num_item = self.record.shape[0] * self.record.shape[1] # 4096
self.pos_avg = self.record.diag().sum() / min_size
if num_item - min_size == 0:
self.neg_avg = (self.record.sum() - self.record.diag().sum()) / 1
return sim / self.temp
if torch.any(torch.isnan(self.record)).item() is True:
print("we got self.record has nan when compute neg_avg")
if torch.any(torch.isnan(self.record.diag())).item() is True:
print("we got self.record.diag() has nan when compute neg_avg")
self.neg_avg = (self.record.sum() - self.record.diag().sum()) / (num_item - min_size)
return sim / self.temp
class BertPredictionHeadTransform(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.transform_act_fn = F.gelu
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-12)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, hid_dim, out_dim):
super().__init__()
self.transform = BertPredictionHeadTransform(hid_dim)
self.decoder = nn.Linear(hid_dim, out_dim, bias=False)
self.bias = nn.Parameter(torch.zeros(out_dim))
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
# V2_2
# change add to concat.
# now support finetune BERT
# grad_bert=0.1 & trainable_block_idx=0
class BERTRelTransformerEncoder(nn.Module):
def __init__(self,
n_vocab,
out_channels,
hidden_channels,
filter_channels,
n_heads,
n_layers,
kernel_size,
p_dropout=0.0,
window_size=4,
block_length=None,
prenet=True,
pre_ln=True,
):
super().__init__()
self.n_vocab = n_vocab
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.n_heads = n_heads
self.n_layers = n_layers
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.window_size = window_size
self.block_length = block_length
self.prenet = prenet
if n_vocab > 0:
self.emb = Embedding(n_vocab, hidden_channels, padding_idx=0)
if prenet:
self.pre = ConvReluNorm(hidden_channels, hidden_channels, hidden_channels,
kernel_size=5, n_layers=3, p_dropout=0)
self.encoder1 = Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers//2,
kernel_size,
p_dropout,
window_size=window_size,
block_length=block_length,
pre_ln=pre_ln,
)
self.encoder2 = Encoder(
hidden_channels,
filter_channels,
n_heads,
n_layers - n_layers//2,
kernel_size,
p_dropout,
window_size=window_size,
block_length=block_length,
pre_ln=pre_ln,
)
if hparams['ds_name'] in ['ljspeech', 'libritts', 'librispeech']:
model_name = 'bert-base-uncased'
elif hparams['ds_name'] in ['biaobei', 'wenetspeech']:
model_name = 'bert-base-chinese'
else:
raise NotImplementedError()
self.tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
config = transformers.AutoConfig.from_pretrained(model_name)
if hparams.get("load_bert_from_pretrained", True):
print("Load BERT from pretrained model ...")
self.bert = transformers.AutoModel.from_pretrained(model_name,config=config)
trainable_start_block = hparams.get("bert_trainable_start_block", 0)
else:
print("Initialize BERT from scratch!")
self.bert = transformers.BertModel(config=config)
trainable_start_block = 0
for k, v in self.bert.named_parameters():
if 'embeddings' in k:
v.requires_grad = False
elif 'encoder.layer' in k:
block_idx = int(k.split(".")[2])
if block_idx < trainable_start_block:
v.requires_grad = False
else:
v.requires_grad = True
elif 'cls' in k:
v.requires_grad = True
else:
print("Unhandled key: {}, set to requires_grad...".format(k))
v.requires_grad = True
self.bert_combine = nn.Sequential(*[
nn.Conv1d(768 + hidden_channels, hidden_channels, 3, 1, 1),
nn.ReLU(),
])
self.pooler = Pooler("avg")
self.sim = Similarity(temp=0.05)
def forward(self, x, x_mask=None, bert_feats=None, ph2word=None, **kwargs):
if self.n_vocab > 0:
x_lengths = (x > 0).long().sum(-1)
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
else:
x_lengths = (x.abs().sum(-1) > 0).long().sum(-1)
x = torch.transpose(x, 1, -1) # [b, h, t]
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
if self.prenet:
x = self.pre(x, x_mask)
x = self.encoder1(x, x_mask)
bert_outputs = self.bert(bert_feats['bert_input_ids'],
attention_mask=bert_feats['bert_attention_mask'],
token_type_ids=bert_feats['bert_token_type_ids'],
output_hidden_states=True)
bert_num_blocks = hparams.get("bert_num_blocks", 12) # total 1+12blocks in bert
bert_embedding = bert_outputs['hidden_states'][bert_num_blocks]
# bert_embedding = bert_outputs['last_hidden_state']
grad_bert = hparams.get("grad_bert", 0.1)
bert_embedding = bert_embedding.detach() * (1-grad_bert) + bert_embedding * grad_bert
bert_word_embedding, _ = group_hidden_by_segs(bert_embedding, bert_feats['bert_token2word'], bert_feats['bert_token2word'].max().item())
bert_ph_embedding = expand_word2ph(bert_word_embedding, ph2word)
bert_ph_embedding = bert_ph_embedding.transpose(1,2)
x = torch.cat([x, bert_ph_embedding], dim=1)
x = self.bert_combine(x)
x = self.encoder2(x, x_mask)
return x.transpose(1, 2)
|