Spaces:
Running
Running
File size: 13,231 Bytes
b7f29b3 41ec323 b7f29b3 a97d3f8 41ec323 b7f29b3 0ad705b 52823c9 a97d3f8 0ad705b b7f29b3 0ad705b b7f29b3 0ad705b b7f29b3 0ad705b b7f29b3 0ad705b b7f29b3 41ec323 0ad705b 41ec323 0ad705b b7f29b3 0ad705b 41ec323 0ad705b 43fdc5b 41ec323 0083c1a 43fdc5b 41ec323 b7f29b3 0ad705b 57eea41 a97d3f8 57eea41 43fdc5b 0ad705b 43fdc5b b7f29b3 0ad705b b7f29b3 0ad705b b7f29b3 0ad705b b634085 b7f29b3 7151b09 0ad705b 7151b09 b634085 b7f29b3 0182410 b7f29b3 b634085 a97d3f8 b634085 0182410 b634085 0182410 7151b09 0ad705b b7f29b3 7151b09 0182410 b634085 0182410 a97d3f8 0182410 a97d3f8 0182410 a97d3f8 0182410 a97d3f8 b7f29b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
###########################################################################################
# Title: Gradio Interface to LLM-chatbot with dynamic RAG-funcionality and ChromaDB
# Author: Andreas Fischer
# Date: October 10th, 2024
# Last update: October 25th, 2024
##########################################################################################
import os
import torch
from transformers import AutoTokenizer, AutoModel # chromaDB
from datetime import datetime, date #add_doc,
import chromadb #chromaDB
from chromadb import Documents, EmbeddingFunction, Embeddings #chromaDB
from chromadb.utils import embedding_functions #chromaDB
import ocrmypdf #convertPDF
from pypdf import PdfReader #convertPDF
import re #format_prompt
import gradio as gr # multimodal_response
from huggingface_hub import InferenceClient #multimodal_response
#---------------------------------------------------
# Specify models for text generation and embeddings
#---------------------------------------------------
myModel="mistralai/Mixtral-8x7b-instruct-v0.1"
#myModel="princeton-nlp/gemma-2-9b-it-SimPO"
#myModel="google/gemma-2-2b-it"
#myModel="meta-llama/Llama-3.1-8B-Instruct"
#mod=myModel
#tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
#cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
#cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
#res=tok.apply_chat_template(cha)
#print(tok.decode(res))
jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
#jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")
device='cuda:0' if torch.cuda.is_available() else 'cpu'
jina.to(device) #cuda:0
print(device)
#-----------------
# ChromaDB-client
#-----------------
class JinaEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
embeddings = jina.encode(input) #max_length=2048
return(embeddings.tolist())
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db/"
onPrem = True if(os.path.exists(dbPath)) else False
if(onPrem==False): dbPath="/home/user/app/db/"
print(dbPath)
client = chromadb.PersistentClient(path=dbPath)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
jina_ef=JinaEmbeddingFunction()
embeddingModel=jina_ef
databases=[(date.today(),"0")] # start a list of databases
#---------------------------------------------------------------------
# Function for formatting single message according to prompt template
#---------------------------------------------------------------------
def format_prompt0(message, history):
prompt = "<s>"
#for user_prompt, bot_response in history:
# prompt += f"[INST] {user_prompt} [/INST]"
# prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
#-------------------------------------------------------------------------
# Function for formatting multiturn-dialogue according to prompt template
#-------------------------------------------------------------------------
def format_prompt(message, history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=False,
startOfString="<s>", template0=" [INST] {system} [/INST] </s>",template1=" [INST] {message} [/INST]",template2=" {response}</s>"): # mistralai/Mixtral-8x7B-Instruct-v0.1
#startOfString="<bos>",template0="<start_of_turn>user\n{system}<end_of_turn>\n<start_of_turn>model\n<end_of_turn>\n",template1="<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n",template2="<end_of_turn>\n"): # google/gemma-2-2b-it
#startOfString="", template0="<|start_header_id|>system<|end_header_id|>\n\n{system}\n<|eot_id|>", template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|>", template2="<|start_header_id|>assistant<|end_header_id|>\n\n{response}</eot_id>"): # meta-llama/Llama-3.1-8B-Instruct?
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
prompt = ""
if RAGAddon is not None:
system += RAGAddon
if system is not None:
prompt += template0.format(system=system) #"<s>"
if history is not None:
for user_message, bot_response in history[-historylimit:]:
if user_message is None: user_message = ""
if bot_response is None: bot_response = ""
bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents
if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit])
if message is not None: prompt += template1.format(message=message[:zeichenlimit])
if system2 is not None:
prompt += system2
return startOfString+prompt
#--------------------------------------------
# Function for converting pdf-files to text
#--------------------------------------------
def convertPDF(pdf_file, allow_ocr=False):
reader = PdfReader(pdf_file)
full_text = ""
page_list = []
def extract_text_from_pdf(reader):
full_text = ""
page_list = []
page_count = 1
for idx, page in enumerate(reader.pages):
text = page.extract_text()
if len(text) > 0:
page_list.append(text)
#full_text += f"---- Page {idx} ----\n" + text + "\n\n"
page_count += 1
return full_text.strip(), page_count, page_list
# Check if there are any images
image_count = sum(len(page.images) for page in reader.pages)
# If there are images and not much content, you may want to perform OCR on the document
if allow_ocr:
print(f"{image_count} Images")
if image_count > 0 and len(full_text) < 1000:
out_pdf_file = pdf_file.replace(".pdf", "_ocr.pdf")
ocrmypdf.ocr(pdf_file, out_pdf_file, force_ocr=True)
reader = PdfReader(out_pdf_file)
# Extract text:
full_text, page_count, page_list = extract_text_from_pdf(reader)
l = len(page_list)
print(f"{l} Pages")
# Extract metadata
metadata = {
"author": reader.metadata.author,
"creator": reader.metadata.creator,
"producer": reader.metadata.producer,
"subject": reader.metadata.subject,
"title": reader.metadata.title,
"image_count": image_count,
"page_count": page_count,
"char_count": len(full_text),
}
return page_list, full_text, metadata
#------------------------------------------
# Function for splitting text with overlap
#------------------------------------------
def split_with_overlap0(text,chunk_size=3500, overlap=700):
""" Split text in chunks based on number of characters (chunk_size) with chunks overlapping (overlap)"""
chunks=[]
step=max(1,chunk_size-overlap)
for i in range(0,len(text),step):
end=min(i+chunk_size,len(text))
chunks.append(text[i:end])
return chunks
import re
def split_with_overlap(text, chunk_size=3500, overlap=700, pattern=r'([.!;?][ \n\r]|[\n\r]{2,})', variant=1, verbose=False):
""" Split text in chunks based on regex (pattern) matches. By default the pattern is '([.!;?][ \\n\\r]|[\\n\\r]{2,})' Chunks are no longer than a certain number of characters (chunk_size) with chunks overlapping (overlap).
By default (variant=1) chunking is based on complete sentences, but it's also possible to split only within the left overlap region and within the rest of the chunk-size (variant==2) or strictly within both overlap-regions (variant=3).
"""
chunks = []
overlap=min(overlap,chunk_size) # Overlap kann nicht größer sein als chunk_size
step = max(1, chunk_size - overlap) # step richtet sich nach chunk_size und overlap
def find_pattern(text): # Funktion zur Suche nach dem Muster
return re.search(pattern, text)
i, lastEnd = 0,0
while i<len(text):
print("i="+str(i))
end = min(i + chunk_size, len(text))
pattern_match = find_pattern(text[i:end]) # erstes Vorkommnis (if any)
matchesStart = [x.start() for x in re.finditer(pattern, text[i:end])] # start aller matches
matchesEnd = [x.start() for x in re.finditer(pattern, text[i:end])] # end aller matches
step = max(1, chunk_size - overlap) # Normalerweise beträgt ein Step chunk_size - overlap
if pattern_match: # Wenn (mindestens) ein Satzzeichen gefunden wurde
for s in matchesStart: # gehe jedes Satzzeichen durch
if ((variant<=2 and s>=overlap) or (variant==3 and s>=overlap and s>(chunk_size-overlap))): # wenn das Satzzeichen nicht im Overlap links liegt (1) oder zusätzlich im reechten Overlap liegt (2) - wobei letzteres unvollständige Sätze bedeuten kann
end=s+i+1 # Setze end auf den Start des Patterns/Satzzeichens im gesamten Text
if(verbose==True): print("***move end:"+str(end)+"; step="+str(step))
if(s<(chunk_size-overlap)):step=min(step,max(1,s-overlap)) # Springe mit step höchstens zum Ende des Satzzeichens (nur erforderlich, wenn end nicht im Overlap)
if ((variant==1 and i>0) or (variant>=2 and pattern_match.start()<overlap and i>0)): # wenn das erste Satzzeichen im Overlap liegt
i=i+pattern_match.start()+1 # Verzichte auf Textteile vor dem ersten Satzzeichen
if(verbose==True): print("i="+str(i)+"; end="+str(end)+"; step="+str(step)+"; len="+str(len(text))+"; match="+str(pattern_match)+"; text="+text[i:end]+"; rest="+text[end:])
if(end>lastEnd): # wenn das Ende sich verschoben hat (und nicht nur den Satzbeginn zu einem bereits bekannten Satz abschneidet)
chunks.append(text[i:end])
lastEnd=end
if(verbose==True): print("Text at position "+str(i)+": "+text[i:end])
i += step
if(len(text[end:])>0): chunks.append(text[end:]) # Ergänze am ende etwaigen Rest
return chunks
fiveChars= "(?<![ \n\(]bspw|[ \n]inkl)"
fourChars= "(?<![ \n\(]sog|[ \n]Mio|[ \n]Mrd|[ \n]Tsd|[ \n]Tel)"
threeChars= "(?<!www|bzw|etc|ggf|[ \n\(]al|[ \n\(]St|[ \n\(]dh|[ \n\(]va|[ \n\(]ca|[ \n\(]Dr|[ \n\(]Hr|[ \n\(]Fr|[0-9]ff)"
twoChars= "(?<![ \n\(][A-Za-zΆ-Ωά-ωäöüß])"
oneChars= "(?<![0-9.])"
sentenceRegex="(?<=[^.]{4})"+fiveChars+fourChars+threeChars+twoChars+oneChars+"[.?!](?![A-Za-zΆ-Ωά-ωäöüß0-9.!?'\"])"
sectionRegex="\n[ ]*\n[\n ]*"
splitRegex="("+sentenceRegex+"|"+sectionRegex+")"
#---------------------------------------------------------------
# Function for adding docs to ChromaDB and/or return collection
#---------------------------------------------------------------
def add_doc(path, session):
global device
print("def add_doc!")
print(path)
anhang=False
if(str.lower(path).endswith(".pdf") and os.path.exists(path)):
doc=convertPDF(path)
if(len(doc[0])>5):
if(not "cuda" in device):
doc="\n\n".join(doc[0][0:5])
gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing excerpt (demo-mode: first 5 pages on CPU setups)!")
else:
doc="\n\n".join(doc[0])
gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")
else:
doc="\n\n".join(doc[0])
gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")
anhang=True
else:
gr.Info("No PDF attached - answer based on DB_"+str(session)+".")
client = chromadb.PersistentClient(path=dbPath)
print(str(client.list_collections()))
print(str(session))
dbName="DB_"+str(session)
if(not "name="+dbName in str(client.list_collections())):
# client.delete_collection(name=dbName)
collection = client.create_collection(
name=dbName,
embedding_function=embeddingModel,
metadata={"hnsw:space": "cosine"})
else:
collection = client.get_collection(
name=dbName, embedding_function=embeddingModel)
if(anhang==True):
corpus=split_with_overlap(doc,3500,700,pattern=splitRegex)
print("Length of corpus: "+str(len(corpus)))
print("Corpus:"+str(corpus))
then = datetime.now()
x=collection.get(include=[])["ids"]
print(len(x))
if(len(x)==0):
chunkSize=40000
for i in range(round(len(corpus)/chunkSize+0.5)):
print("embed batch "+str(i)+" of "+str(round(len(corpus)/chunkSize+0.5)))
ids=list(range(i*chunkSize,(i*chunkSize+chunkSize)))
batch=corpus[i*chunkSize:(i*chunkSize+chunkSize)]
textIDs=[str(id) for id in ids[0:len(batch)]]
ids=[str(id+len(x)+1) for id in ids[0:len(batch)]]
collection.add(documents=batch, ids=ids,
metadatas=[{"date": str("2024-10-10")} for b in batch])
print("finished batch "+str(i)+" of "+str(round(len(corpus)/40000+0.5)))
now = datetime.now()
gr.Info(f"Indexing complete!")
print(now-then)
return(collection)
|