File size: 13,597 Bytes
7b696a9 659ac42 7b696a9 0efbbd1 b837cef 2695353 7c262c0 78ff946 659ac42 7b696a9 d4e9403 7b696a9 a7a2697 7b696a9 a37eda0 b26f2f0 a37eda0 7464d19 781637d eecfcaa f0113bc 7c83090 f0113bc 7b696a9 bd7a321 7c83090 a37eda0 bd7a321 027fe5b a37eda0 db30dbe a7a2697 7b696a9 691294e 7b696a9 691294e b837cef eecfcaa 691294e eecfcaa 691294e b837cef 691294e b837cef 691294e eecfcaa dffbbc0 a7a2697 eecfcaa a7a2697 30e0538 659ac42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- arcee-ai/Virtuoso-Small
- CultriX/SeQwence-14B-EvolMerge
- CultriX/Qwen2.5-14B-Wernicke
- sthenno-com/miscii-14b-1028
- underwoods/medius-erebus-magnum-14b
- sometimesanotion/lamarck-14b-prose-model_stock
- sometimesanotion/lamarck-14b-reason-model_stock
metrics:
- accuracy
pipeline_tag: text-generation
model-index:
- name: Lamarck-14B-v0.3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 50.32
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 51.27
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 32.4
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.46
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.0
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.01
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
name: Open LLM Leaderboard
---

---
# merge
Lamarck-14B is a carefully designed merge which emphasizes [arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small) in early and finishing layers, and midway features strong influence on reasoning and prose from [CultriX/SeQwence-14B-EvolMerge](http://huggingface.co/CultriX/SeQwence-14B-EvolMerge) especially, but a number of other models as well through its model_stock.
Version 0.3 is the product of a carefully planned and tested sequence of templated merges, produced by a toolchain which wraps around Arcee's mergekit.
For GGUFs, [mradermacher/Lamarck-14B-v0.3-i1-GGUF](https://huggingface.co/mradermacher/Lamarck-14B-v0.3-i1-GGUF) has you covered. Thank you @mradermacher!
**The merge strategy of Lamarck 0.3 can be summarized as:**
- Two model_stocks commence specialized branches for reasoning and prose quality.
- For refinement on both model_stocks, DELLA merges re-emphasize selected ancestors.
- For smooth instruction following, a SLERP merges Virtuoso with a DELLA merge of the two branches, where reason vs. prose quality are balanced.
- For finalization and normalization, a TIES merge.

The first two layers come entirely from Virtuoso. The choice to leave these layers untouched comes from [arxiv.org/abs/2307.03172](https://arxiv.org/abs/2307.03172) which identifies early attention glitches as a chief cause of hallucinations. Layers 3-8 feature a SLERP gradient into introducing the DELLA merge tree in which the reason branch is emphasized, the prose branch only given a small ranking.
### Thanks go to:
- @arcee-ai's team for the ever-capable mergekit, and the exceptional Virtuoso Small model.
- @CultriX for the helpful examples of memory-efficient sliced merges and evolutionary merging. Their contribution of tinyevals on version 0.1 of Lamarck did much to validate the hypotheses of the DELLA->SLERP gradient process used here.
- The authors behind the capable models that appear in the model_stock.
### Models Merged
**Top influences:** These ancestors are base models and present in the model_stocks, but are heavily re-emphasized in the DELLA and SLERP merges.
- **[arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small)** - A brand new model from Arcee, refined from the notable cross-architecture Llama-to-Qwen distillation [arcee-ai/SuperNova-Medius](https://huggingface.co/arcee-ai/SuperNova-Medius). The first two layers are nearly exclusively from Virtuoso. It has proven to be a well-rounded performer, and contributes a noticeable boost to the model's prose quality.
- **[CultriX/SeQwence-14B-EvolMerge](http://huggingface.co/CultriX/SeQwence-14B-EvolMerge)** - A top contender on reasoning benchmarks.
**Reason:** While Virtuoso is the strongest influence the starting ending layers, the reasoning mo
- **[CultriX/Qwen2.5-14B-Wernicke](http://huggingface.co/CultriX/Qwen2.5-14B-Wernicke)** - A top performer for Arc and GPQA, Wernicke is re-emphasized in small but highly-ranked portions of the model.
- **[VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO)** - This model's influence is understated, but aids BBH and coding capability.
**Prose:** While the prose module is gently applied, its impact is noticeable on Lamarck 0.3's prose quality, and a DELLA merge re-emphasizes the contributions of two models particularly:
- **[sthenno-com/miscii-14b-1028](https://huggingface.co/sthenno-com/miscii-14b-1028)**
- **[underwoods/medius-erebus-magnum-14b](https://huggingface.co/underwoods/medius-erebus-magnum-14b)**
**Model stock:** Two model_stock merges, specialized for specific aspects of performance, are used to mildly influence a large range of the model.
- **[sometimesanotion/lamarck-14b-reason-model_stock](https://huggingface.co/sometimesanotion/lamarck-14b-reason-model_stock)**
- **[sometimesanotion/lamarck-14b-prose-model_stock](https://huggingface.co/sometimesanotion/lamarck-14b-prose-model_stock)** - This brings in a little influence from [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2), [oxyapi/oxy-1-small](https://huggingface.co/oxyapi/oxy-1-small), and [allura-org/TQ2.5-14B-Sugarquill-v1](https://huggingface.co/allura-org/TQ2.5-14B-Sugarquill-v1).
**Note on abliteration:** This author believes that adjacent services and not language models themselves are where guardrails are best placed. Effort to de-censor Lamarck will resume after the model has been further studied.
### Configuration
The following YAML configuration was used to produce this model:
```yaml
name: lamarck-14b-reason-della # This contributes the knowledge and reasoning pool, later to be merged
merge_method: della # with the dominant instruction-following model
base_model: arcee-ai/Virtuoso-Small
tokenizer_source: arcee-ai/Virtuoso-Small
parameters:
int8_mask: false
normalize: true
rescale: false
density: 0.30
weight: 0.50
epsilon: 0.08
lambda: 1.00
models:
- model: CultriX/SeQwence-14B-EvolMerge
parameters:
density: 0.70
weight: 0.90
- model: sometimesanotion/lamarck-14b-reason-model_stock
parameters:
density: 0.90
weight: 0.60
- model: CultriX/Qwen2.5-14B-Wernicke
parameters:
density: 0.20
weight: 0.30
dtype: bfloat16
out_dtype: bfloat16
---
name: lamarck-14b-prose-della # This contributes the prose, later to be merged
merge_method: della # with the dominant instruction-following model
base_model: arcee-ai/Virtuoso-Small
tokenizer_source: arcee-ai/Virtuoso-Small
parameters:
int8_mask: false
normalize: true
rescale: false
density: 0.30
weight: 0.50
epsilon: 0.08
lambda: 0.95
models:
- model: sthenno-com/miscii-14b-1028
parameters:
density: 0.40
weight: 0.90
- model: sometimesanotion/lamarck-14b-prose-model_stock
parameters:
density: 0.60
weight: 0.70
- model: underwoods/medius-erebus-magnum-14b
dtype: bfloat16
out_dtype: bfloat16
---
name: lamarck-14b-converge-della # This is the strongest control point to quickly
merge_method: della # re-balance reasoning vs. prose
base_model: arcee-ai/Virtuoso-Small
tokenizer_source: arcee-ai/Virtuoso-Small
parameters:
int8_mask: false
normalize: true
rescale: false
density: 0.30
weight: 0.50
epsilon: 0.08
lambda: 1.00
models:
- model: sometimesanotion/lamarck-14b-reason-della
parameters:
density: 0.80
weight: 1.00
- model: arcee-ai/Virtuoso-Small
parameters:
density: 0.40
weight: 0.50
- model: sometimesanotion/lamarck-14b-prose-della
parameters:
density: 0.10
weight: 0.40
dtype: bfloat16
out_dtype: bfloat16
---
name: lamarck-14b-converge # Virtuoso has good capabilities all-around; it is 100% of the first
merge_method: slerp # two layers, and blends into the reasoning+prose convergance
base_model: arcee-ai/Virtuoso-Small # for some interesting boosts
tokenizer_source: base
parameters:
t: [ 0.00, 0.60, 0.80, 0.80, 0.80, 0.70, 0.40 ]
slices:
- sources:
- layer_range: [ 0, 2 ]
model: arcee-ai/Virtuoso-Small
- layer_range: [ 0, 2 ]
model: merges/lamarck-14b-converge-della
t: [ 0.00, 0.00 ]
- sources:
- layer_range: [ 2, 8 ]
model: arcee-ai/Virtuoso-Small
- layer_range: [ 2, 8 ]
model: merges/lamarck-14b-converge-della
t: [ 0.00, 0.60 ]
- sources:
- layer_range: [ 8, 16 ]
model: arcee-ai/Virtuoso-Small
- layer_range: [ 8, 16 ]
model: merges/lamarck-14b-converge-della
t: [ 0.60, 0.70 ]
- sources:
- layer_range: [ 16, 24 ]
model: arcee-ai/Virtuoso-Small
- layer_range: [ 16, 24 ]
model: merges/lamarck-14b-converge-della
t: [ 0.70, 0.70 ]
- sources:
- layer_range: [ 24, 32 ]
model: arcee-ai/Virtuoso-Small
- layer_range: [ 24, 32 ]
model: merges/lamarck-14b-converge-della
t: [ 0.70, 0.70 ]
- sources:
- layer_range: [ 32, 40 ]
model: arcee-ai/Virtuoso-Small
- layer_range: [ 32, 40 ]
model: merges/lamarck-14b-converge-della
t: [ 0.70, 0.60 ]
- sources:
- layer_range: [ 40, 48 ]
model: arcee-ai/Virtuoso-Small
- layer_range: [ 40, 48 ]
model: merges/lamarck-14b-converge-della
t: [ 0.60, 0.40 ]
dtype: bfloat16
out_dtype: bfloat16
---
name: lamarck-14b-finalize
merge_method: ties
base_model: Qwen/Qwen2.5-14B
tokenizer_source: Qwen/Qwen2.5-14B-Instruct
parameters:
int8_mask: false
normalize: true
rescale: false
density: 1.00
weight: 1.00
models:
- model: merges/lamarck-14b-converge
dtype: bfloat16
out_dtype: bfloat16
---
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sometimesanotion__Lamarck-14B-v0.3)
| Metric |Value|
|-------------------|----:|
|Avg. |36.58|
|IFEval (0-Shot) |50.32|
|BBH (3-Shot) |51.27|
|MATH Lvl 5 (4-Shot)|32.40|
|GPQA (0-shot) |18.46|
|MuSR (0-shot) |18.00|
|MMLU-PRO (5-shot) |49.01|
|