File size: 7,513 Bytes
7b696a9
b16bf29
 
 
7b696a9
 
 
 
 
 
0efbbd1
 
b837cef
 
2695353
 
7c262c0
 
78ff946
b16bf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3dd314
 
b16bf29
 
 
 
 
 
 
 
 
 
 
 
 
 
b3dd314
 
b16bf29
 
 
 
 
 
 
 
 
 
 
 
 
 
b3dd314
 
b16bf29
 
 
 
 
 
 
 
 
 
 
 
 
 
b3dd314
 
b16bf29
 
 
 
 
 
 
 
 
 
 
b3dd314
b16bf29
 
b3dd314
 
b16bf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3dd314
 
b16bf29
b3dd314
7b696a9
d4e9403
7b696a9
 
a7a2697
7b696a9
722a99c
7464d19
781637d
 
eecfcaa
 
f0113bc
7c83090
 
f0113bc
7b696a9
bd7a321
 
 
 
027fe5b
a37eda0
db30dbe
a7a2697
7b696a9
 
 
 
 
691294e
 
5efe811
7b696a9
 
 
691294e
 
b837cef
eecfcaa
691294e
eecfcaa
691294e
b837cef
 
 
691294e
b837cef
691294e
eecfcaa
b16bf29
 
 
 
 
 
 
 
 
 
 
b3dd314
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- arcee-ai/Virtuoso-Small
- CultriX/SeQwence-14B-EvolMerge
- CultriX/Qwen2.5-14B-Wernicke
- sthenno-com/miscii-14b-1028
- underwoods/medius-erebus-magnum-14b
- sometimesanotion/lamarck-14b-prose-model_stock
- sometimesanotion/lamarck-14b-reason-model_stock
metrics:
- accuracy
pipeline_tag: text-generation
model-index:
- name: Lamarck-14B-v0.3
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 50.32
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 51.27
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 32.4
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.46
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.01
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sometimesanotion/Lamarck-14B-v0.3
      name: Open LLM Leaderboard
new_version: sometimesanotion/Lamarck-14B-v0.4-Qwenvergence
---
![Lamarck.webp](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.3/resolve/main/Lamarck.webp)
---

# merge

Lamarck-14B is the product of a multi-stage merge which emphasizes [arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small) in early and finishing layers, and midway features strong emphasis on reasoning, and ends balanced somewhat towards Virtuoso again.

For GGUFs, [mradermacher/Lamarck-14B-v0.3-i1-GGUF](https://huggingface.co/mradermacher/Lamarck-14B-v0.3-i1-GGUF) has you covered.  Thank you @mradermacher!

**The merge strategy of Lamarck 0.3 can be summarized as:**

- Two model_stocks commence specialized branches for reasoning and prose quality.
- For refinement on both model_stocks, DELLA merges re-emphasize selected ancestors.
- For smooth instruction following, a SLERP merges Virtuoso with a DELLA merge of the two branches, where reason vs. prose quality are balanced.
- For finalization and normalization, a TIES merge.

![graph.png](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.3-experimental/resolve/main/graph.png)

### Thanks go to:

- @arcee-ai's team for the ever-capable mergekit, and the exceptional Virtuoso Small model.
- @CultriX for the helpful examples of memory-efficient sliced merges and evolutionary merging.  Their contribution of tinyevals on version 0.1 of Lamarck did much to validate the hypotheses of the DELLA->SLERP gradient process used here.
- The authors behind the capable models that appear in the model_stock.
### Models Merged

**Top influences:** These ancestors are base models and present in the model_stocks, but are heavily re-emphasized in the DELLA and SLERP merges.

- **[arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small)** - A brand new model from Arcee, refined from the notable cross-architecture Llama-to-Qwen distillation [arcee-ai/SuperNova-Medius](https://huggingface.co/arcee-ai/SuperNova-Medius).  The first two layers are nearly exclusively from Virtuoso.  It has proven to be a well-rounded performer, and contributes a noticeable boost to the model's prose quality.

- **[CultriX/SeQwence-14B-EvolMerge](http://huggingface.co/CultriX/SeQwence-14B-EvolMerge)** - A top contender on reasoning benchmarks.  

**Reason:** Virtuoso Small is the strongest influence on starting and ending layers, but there are other contributions between:

- **[CultriX/Qwen2.5-14B-Wernicke](http://huggingface.co/CultriX/Qwen2.5-14B-Wernicke)** - A top performer for Arc and GPQA, Wernicke is re-emphasized in small but highly-ranked portions of the model.

- **[VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO)** - This model's influence is understated, but aids BBH and coding capability.

**Prose:** While the prose module is gently applied, its impact is noticeable on Lamarck 0.3's prose quality, and a DELLA merge re-emphasizes the contributions of two models particularly:

- **[sthenno-com/miscii-14b-1028](https://huggingface.co/sthenno-com/miscii-14b-1028)**

- **[underwoods/medius-erebus-magnum-14b](https://huggingface.co/underwoods/medius-erebus-magnum-14b)**

**Model stock:** Two model_stock merges, specialized for specific aspects of performance, are used to mildly influence a large range of the model.

- **[sometimesanotion/lamarck-14b-reason-model_stock](https://huggingface.co/sometimesanotion/lamarck-14b-reason-model_stock)** 

- **[sometimesanotion/lamarck-14b-prose-model_stock](https://huggingface.co/sometimesanotion/lamarck-14b-prose-model_stock)** - This brings in a little influence from [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2), [oxyapi/oxy-1-small](https://huggingface.co/oxyapi/oxy-1-small), and [allura-org/TQ2.5-14B-Sugarquill-v1](https://huggingface.co/allura-org/TQ2.5-14B-Sugarquill-v1).

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sometimesanotion__Lamarck-14B-v0.3)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |36.58|
|IFEval (0-Shot)    |50.32|
|BBH (3-Shot)       |51.27|
|MATH Lvl 5 (4-Shot)|32.40|
|GPQA (0-shot)      |18.46|
|MuSR (0-shot)      |18.00|
|MMLU-PRO (5-shot)  |49.01|