File size: 10,029 Bytes
7b696a9
 
 
 
 
 
 
 
0efbbd1
 
b837cef
 
2695353
 
7b696a9
 
 
d4e9403
7b696a9
 
bd7a321
7b696a9
f0113bc
b26f2f0
f0113bc
7464d19
781637d
 
eecfcaa
 
f0113bc
 
2c046ad
f0113bc
7b696a9
bd7a321
 
 
 
027fe5b
bd7a321
027fe5b
bd7a321
eecfcaa
7b696a9
 
 
 
 
691294e
 
 
7b696a9
 
 
691294e
 
b837cef
eecfcaa
691294e
eecfcaa
691294e
b837cef
 
 
691294e
b837cef
691294e
eecfcaa
dffbbc0
 
eecfcaa
 
 
30e0538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
library_name: transformers
tags:
- mergekit
- merge
license: apache-2.0
base_model:
- arcee-ai/Virtuoso-Small
- CultriX/SeQwence-14B-EvolMerge
- CultriX/Qwen2.5-14B-Wernicke
- sthenno-com/miscii-14b-1028
- underwoods/medius-erebus-magnum-14b
- sometimesanotion/lamarck-14b-prose-model_stock
- sometimesanotion/lamarck-14b-reason-model_stock
language:
- en
---
![Lamarck.webp](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.3/resolve/main/Lamarck.webp)
---

### Overview:

Lamarck-14B is a carefully designed merge which emphasizes [arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small) in early and finishing layers, and midway features strong influence on reasoning and prose from [CultriX/SeQwence-14B-EvolMerge](http://huggingface.co/CultriX/SeQwence-14B-EvolMerge) especially, but a hefty list of other models as well.

Its reasoning and prose skills are quite strong.  Version 0.3 is the product of a carefully planned and tested sequence of templated merges, produced by a toolchain which wraps around Arcee's mergekit.

For GGUFs, [mradermacher/Lamarck-14B-v0.3-i1-GGUF](https://huggingface.co/mradermacher/Lamarck-14B-v0.3-i1-GGUF) has you covered.  Thank you @mradermacher!

**The merge strategy of Lamarck 0.3 can be summarized as:**

- Two model_stocks commence specialized branches for reasoning and prose quality.
- For refinement on both model_stocks, DELLA and SLERP merges re-emphasize selected ancestors.
- For smooth instruction following, a SLERP merged Virtuoso with converged branches.
- For finalization and normalization, a TIES merge.

![graph.png](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.3-experimental/resolve/main/graph.png)

### Thanks go to:

- @arcee-ai's team for the ever-capable mergekit, and the exceptional Virtuoso Small model.
- @CultriX for the helpful examples of memory-efficient sliced merges and evolutionary merging.  Their contribution of tinyevals on version 0.1 of Lamarck did much to validate the hypotheses of the process used here.
- The authors behind the capable models that appear in the model_stock.  The boost to prose quality is already noticeable.

### Models Merged:

**Top influences:** These ancestors are base models and present in the model_stocks, but are heavily re-emphasized in the DELLA and SLERP merges.

- **[arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small)** - A brand new model from Arcee, refined from the notable cross-architecture Llama-to-Qwen distillation [arcee-ai/SuperNova-Medius](https://huggingface.co/arcee-ai/SuperNova-Medius).  The first two layers are nearly exclusively from Virtuoso.  It has proven to be a well-rounded performer, and contributes a noticeable boost to the model's prose quality.

- **[CultriX/SeQwence-14B-EvolMerge](http://huggingface.co/CultriX/SeQwence-14B-EvolMerge)** - A top contender on reasoning benchmarks.  

**Reason:** While Virtuoso is the strongest influence the starting ending layers, the reasoning mo

- **[CultriX/Qwen2.5-14B-Wernicke](http://huggingface.co/CultriX/Qwen2.5-14B-Wernicke)** - A top performer for Arc and GPQA, Wernicke is re-emphasized in small but highly-ranked portions of the model.

- **[VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO)** - This model's influence is understated, but aids BBH and coding capability.

**Prose:** While the prose module is gently applied, its impact is noticeable on Lamarck 0.3's prose quality, and a DELLA merge re-emphasizes the contributions of two models particularly:

- **[sthenno-com/miscii-14b-1028](https://huggingface.co/sthenno-com/miscii-14b-1028)**

- **[underwoods/medius-erebus-magnum-14b](https://huggingface.co/underwoods/medius-erebus-magnum-14b)**

**Model stock:** Two model_stock merges, specialized for specific aspects of performance, are used to mildly influence a large range of the model.

- **[sometimesanotion/lamarck-14b-reason-model_stock](https://huggingface.co/sometimesanotion/lamarck-14b-reason-model_stock)** 

- **[sometimesanotion/lamarck-14b-prose-model_stock](https://huggingface.co/sometimesanotion/lamarck-14b-prose-model_stock)** - This brings in a little influence from [EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2), [oxyapi/oxy-1-small](https://huggingface.co/oxyapi/oxy-1-small), and [allura-org/TQ2.5-14B-Sugarquill-v1](https://huggingface.co/allura-org/TQ2.5-14B-Sugarquill-v1).

**Note on abliteration:**  This author believes that adjacent services and not language models themselves are where guardrails are best placed.  Effort to de-censor Lamarck will resume after the model has been further studied.

### Configuration:

The following YAML configurations were used to produce this model:

```yaml
name:                lamarck-14b-reason-della                  # This contributes the knowledge and reasoning pool, later to be merged
merge_method:        della                                     # with the dominant instruction-following model
base_model:          arcee-ai/Virtuoso-Small
tokenizer_source:    arcee-ai/Virtuoso-Small
parameters:
  int8_mask:         false
  normalize:         true
  rescale:           false
  density:           0.30
  weight:            0.50
  epsilon:           0.08
  lambda:            1.00
models:
  - model:           CultriX/SeQwence-14B-EvolMerge
    parameters:
      density:       0.70
      weight:        0.90
  - model:           sometimesanotion/lamarck-14b-reason-model_stock
    parameters:
      density:       0.90
      weight:        0.60
  - model:           CultriX/Qwen2.5-14B-Wernicke
    parameters:
      density:       0.20
      weight:        0.30
dtype:               bfloat16
out_dtype:           bfloat16
---
name:                lamarck-14b-prose-della                  # This contributes the prose, later to be merged
merge_method:        della                                    # with the dominant instruction-following model
base_model:          arcee-ai/Virtuoso-Small
tokenizer_source:    arcee-ai/Virtuoso-Small
parameters:
  int8_mask:         false
  normalize:         true
  rescale:           false
  density:           0.30
  weight:            0.50
  epsilon:           0.08
  lambda:            0.95
models:
  - model:           sthenno-com/miscii-14b-1028
    parameters:
      density:       0.40
      weight:        0.90
  - model:           sometimesanotion/lamarck-14b-prose-model_stock
    parameters:
      density:       0.60
      weight:        0.70
  - model:           underwoods/medius-erebus-magnum-14b
dtype:               bfloat16
out_dtype:           bfloat16
---
name:                lamarck-14b-converge-della                # This is the strongest control point to quickly
merge_method:        della                                     # re-balance reasoning vs. prose
base_model:          arcee-ai/Virtuoso-Small
tokenizer_source:    arcee-ai/Virtuoso-Small
parameters:
  int8_mask:         false
  normalize:         true
  rescale:           false
  density:           0.30
  weight:            0.50
  epsilon:           0.08
  lambda:            1.00
models:
  - model:           sometimesanotion/lamarck-14b-reason-della
    parameters:
      density:       0.80
      weight:        1.00
  - model:           arcee-ai/Virtuoso-Small
    parameters:
      density:       0.40
      weight:        0.50
  - model:           sometimesanotion/lamarck-14b-prose-della
    parameters:
      density:       0.10
      weight:        0.40
dtype:               bfloat16
out_dtype:           bfloat16
---
name:                lamarck-14b-converge                     # Virtuoso has good capabilities all-around; it is 100% of the first 
merge_method:        slerp                                    # two layers, and blends into the reasoning+prose convergance 
base_model:          arcee-ai/Virtuoso-Small                  # for some interesting boosts
tokenizer_source:    base
parameters:
  t:                 [ 0.00, 0.60, 0.80, 0.80, 0.80, 0.70, 0.40 ]
slices:
  - sources:
    - layer_range:   [ 0, 2 ]
      model:         arcee-ai/Virtuoso-Small
    - layer_range:   [ 0, 2 ]
      model:         merges/lamarck-14b-converge-della
    t:               [ 0.00, 0.00 ]
  - sources:
    - layer_range:   [ 2, 8 ]
      model:         arcee-ai/Virtuoso-Small
    - layer_range:   [ 2, 8 ]
      model:         merges/lamarck-14b-converge-della
    t:               [ 0.00, 0.60 ]
  - sources:
    - layer_range:   [ 8, 16 ]
      model:         arcee-ai/Virtuoso-Small
    - layer_range:   [ 8, 16 ]
      model:         merges/lamarck-14b-converge-della
    t:               [ 0.60, 0.70 ]
  - sources:
    - layer_range:   [ 16, 24 ]
      model:         arcee-ai/Virtuoso-Small
    - layer_range:   [ 16, 24 ]
      model:         merges/lamarck-14b-converge-della
    t:               [ 0.70, 0.70 ]
  - sources:
    - layer_range:   [ 24, 32 ]
      model:         arcee-ai/Virtuoso-Small
    - layer_range:   [ 24, 32 ]
      model:         merges/lamarck-14b-converge-della
    t:               [ 0.70, 0.70 ]
  - sources:
    - layer_range:   [ 32, 40 ]
      model:         arcee-ai/Virtuoso-Small
    - layer_range:   [ 32, 40 ]
      model:         merges/lamarck-14b-converge-della
    t:               [ 0.70, 0.60 ]
  - sources:
    - layer_range:   [ 40, 48 ]
      model:         arcee-ai/Virtuoso-Small
    - layer_range:   [ 40, 48 ]
      model:         merges/lamarck-14b-converge-della
    t:               [ 0.60, 0.40 ]
dtype:               bfloat16
out_dtype:           bfloat16
---
name:                lamarck-14b-finalize
merge_method:        ties
base_model:          Qwen/Qwen2.5-14B
tokenizer_source:    Qwen/Qwen2.5-14B-Instruct
parameters:
  int8_mask:         false
  normalize:         true
  rescale:           false
  density:           1.00
  weight:            1.00
models:
  - model:           merges/lamarck-14b-converge
dtype:               bfloat16
out_dtype:           bfloat16
---

```