metadata
base_model: Undi95/Llama-3-LewdPlay-8B-evo
inference: false
library_name: transformers
license: cc-by-nc-4.0
merged_models:
- vicgalle/Roleplay-Llama-3-8B
- Undi95/Llama-3-Unholy-8B-e4
- Undi95/Llama-3-LewdPlay-8B
pipeline_tag: text-generation
quantized_by: Suparious
tags:
- mergekit
- merge
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
Undi95/Llama-3-LewdPlay-8B-evo AWQ
- Model creator: Undi95
- Original model: Llama-3-LewdPlay-8B-evo
Model Summary
This is a merge of pre-trained language models created using mergekit.
The new EVOLVE merge method was used (on MMLU specifically), see below for more information!
Unholy was used for uncensoring, Roleplay Llama 3 for the DPO train he got on top, and LewdPlay for the... lewd side.
How to use
Prompt template: Llama3
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{output}<|eot_id|>
Install the necessary packages
pip install --upgrade autoawq autoawq-kernels
Example Python code
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/Llama-3-LewdPlay-8B-evo-AWQ"
system_message = "You are Llama-3-LewdPlay-8B-evo, incarnated as a powerful AI. You were created by Undi95."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- Text Generation Webui - using Loader: AutoAWQ
- vLLM - version 0.2.2 or later for support for all model types.
- Hugging Face Text Generation Inference (TGI)
- Transformers version 4.35.0 and later, from any code or client that supports Transformers
- AutoAWQ - for use from Python code