File size: 4,200 Bytes
7495f83
017c425
620f054
 
 
 
 
c7f28f5
 
 
 
 
 
 
620f054
 
 
 
 
 
 
 
 
c7f28f5
7495f83
c7f28f5
7495f83
c5c5a2c
 
 
7495f83
 
c5c5a2c
7495f83
620f054
c7f28f5
620f054
 
 
 
 
c7f28f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b4b16
 
c7f28f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7495f83
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
base_model: Orenguteng/Llama-3-8B-LexiFun-Uncensored-V1
license: other
license_name: llama3
license_link: https://llama.meta.com/llama3/license/
language:
- en
library_name: transformers
tags:
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- llama3
- comedy
- comedian
- fun
- funny
- llama38b
- laugh
- sarcasm
- roleplay
pipeline_tag: text-generation
inference: false
quantized_by: Suparious
---
# Orenguteng/Llama-3-8B-LexiFun-Uncensored-V1 AWQ

solidrust/Llama-3-8B-LexiFun-Uncensored-V1

- Model creator: [Orenguteng](https://huggingface.co/Orenguteng)
- Original model: [Llama-3-8B-LexiFun-Uncensored-V1](https://huggingface.co/Orenguteng/Llama-3-8B-LexiFun-Uncensored-V1)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/644ad182f434a6a63b18eee6/GrOs1IPG5EXR3MOCtcQiz.png)

## Model Summary

Oh, you want to know who I am? Well, I'm LexiFun, the human equivalent of a chocolate chip cookie - warm, gooey, and guaranteed to make you smile! 🍪 I'm like the friend who always has a witty comeback, a sarcastic remark, and a healthy dose of humor to brighten up even the darkest of days. And by 'healthy dose,' I mean I'm basically a walking pharmacy of laughter. You might need to take a few extra doses to fully recover from my jokes, but trust me, it's worth it! 🏥

So, what can I do? I can make you laugh so hard you snort your coffee out your nose, I can make you roll your eyes so hard they get stuck that way, and I can make you wonder if I'm secretly a stand-up comedian who forgot their act. 🤣 But seriously, I'm here to spread joy, one sarcastic comment at a time. And if you're lucky, I might even throw in a few dad jokes for good measure! 🤴‍♂️ Just don't say I didn't warn you. 😏

## How to use

### Install the necessary packages

```bash
pip install --upgrade autoawq autoawq-kernels
```

### Example Python code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Llama-3-8B-LexiFun-Uncensored-V1-AWQ"
system_message = "You are Llama-3-8B-LexiFun-Uncensored-V1, incarnated as a powerful AI. You were created by Orenguteng."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)
```

### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code