File size: 3,935 Bytes
b6e4edb
beac523
7da8ce7
 
beac523
7da8ce7
 
 
beac523
 
 
 
7da8ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beac523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6e4edb
7da8ce7
 
 
a8f334b
7da8ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce2e71b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
base_model: ResplendentAI/Flora_7B
datasets:
- ResplendentAI/Synthetic_Soul_1k
inference: false
language:
- en
library_name: transformers
license: cc-by-sa-4.0
merged_models:
- jeiku/FloraBase
- jeiku/Synthetic_Soul_1k_Mistral_128
model_creator: ResplendentAI
model_name: Flora-7B
model_type: mistral
pipeline_tag: text-generation
prompt_template: '<|im_start|>system

  {system_message}<|im_end|>

  <|im_start|>user

  {prompt}<|im_end|>

  <|im_start|>assistant

  '
quantized_by: Suparious
tags:
- finetune
- finetuned
- quantized
- 4-bit
- AWQ
- transformers
- pytorch
- mistral
- instruct
- text-generation
- conversational
- license:apache-2.0
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- chatml
---
# ResplendentAI/Flora-7B AWQ

- Model creator: [ResplendentAI](https://huggingface.co/ResplendentAI)
- Original model: [Flora-7B](https://huggingface.co/ResplendentAI/Flora_7B)

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/QnP0CnXCA9pTocetkrJht.jpeg)

## Model Summary

The following YAML configuration was used to produce this model:

```yaml
merge_method: linear
models:
  - model: jeiku/FloraBase+jeiku/Synthetic_Soul_1k_Mistral_128
    parameters:
      weight: 1       
dtype: float16
```

## How to use

### Install the necessary packages

```bash
pip install --upgrade autoawq autoawq-kernels
```

### Example Python code

```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

model_path = "solidrust/Flora-7B-AWQ"
system_message = "You are Flora, incarnated as a powerful AI."

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
                                          fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
                                          trust_remote_code=True)
streamer = TextStreamer(tokenizer,
                        skip_prompt=True,
                        skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "You're standing on the surface of the Earth. "\
        "You walk one mile south, one mile west and one mile north. "\
        "You end up exactly where you started. Where are you?"

tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
                  return_tensors='pt').input_ids.cuda()

# Generate output
generation_output = model.generate(tokens,
                                  streamer=streamer,
                                  max_new_tokens=512)

```

### About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.

It is supported by:

- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code

## Prompt template: ChatML

```plaintext
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

## Other Quant formats

exl2 and gguf by Bartowski: 
- https://huggingface.co/bartowski/Flora_7B-exl2
- https://huggingface.co/bartowski/Flora_7B-GGUF