|
--- |
|
license: other |
|
tags: |
|
- axolotl |
|
- generated_from_trainer |
|
- Mistral |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- science |
|
- physics |
|
- chemistry |
|
- biology |
|
- math |
|
- quantized |
|
- 4-bit |
|
- AWQ |
|
- autotrain_compatible |
|
- endpoints_compatible |
|
- text-generation-inference |
|
base_model: Weyaxi/Einstein-v5-v0.2-7B |
|
datasets: |
|
- allenai/ai2_arc |
|
- camel-ai/physics |
|
- camel-ai/chemistry |
|
- camel-ai/biology |
|
- camel-ai/math |
|
- metaeval/reclor |
|
- openbookqa |
|
- mandyyyyii/scibench |
|
- derek-thomas/ScienceQA |
|
- TIGER-Lab/ScienceEval |
|
- jondurbin/airoboros-3.2 |
|
- LDJnr/Capybara |
|
- Cot-Alpaca-GPT4-From-OpenHermes-2.5 |
|
- STEM-AI-mtl/Electrical-engineering |
|
- knowrohit07/saraswati-stem |
|
- sablo/oasst2_curated |
|
- lmsys/lmsys-chat-1m |
|
- TIGER-Lab/MathInstruct |
|
- bigbio/med_qa |
|
- meta-math/MetaMathQA-40K |
|
- openbookqa |
|
- piqa |
|
- metaeval/reclor |
|
- derek-thomas/ScienceQA |
|
- scibench |
|
- sciq |
|
- Open-Orca/SlimOrca |
|
- migtissera/Synthia-v1.3 |
|
- TIGER-Lab/ScienceEval |
|
- allenai/WildChat |
|
- microsoft/orca-math-word-problems-200k |
|
- openchat/openchat_sharegpt4_dataset |
|
- teknium/GPTeacher-General-Instruct |
|
- m-a-p/CodeFeedback-Filtered-Instruction |
|
model-index: |
|
- name: Einstein-v5-v0.2-7B |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 60.92 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 80.99 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 61.02 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 52.59 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 78.69 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 59.67 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v5-v0.2-7B |
|
name: Open LLM Leaderboard |
|
quantized_by: Suparious |
|
pipeline_tag: text-generation |
|
model_creator: Weyaxi |
|
model_name: Einstein-v5-v0.2-7B |
|
inference: false |
|
prompt_template: '<|im_start|>system |
|
|
|
{system_message}<|im_end|> |
|
|
|
<|im_start|>user |
|
|
|
{prompt}<|im_end|> |
|
|
|
<|im_start|>assistant |
|
|
|
' |
|
--- |
|
# Weyaxi/Einstein-v5-v0.2-7B AWQ |
|
|
|
- Model creator: [Weyaxi](https://huggingface.co/Weyaxi) |
|
- Original model: [Einstein-v5-v0.2-7B](https://huggingface.co/Weyaxi/Einstein-v5-v0.2-7B) |
|
|
|
## Model Summary |
|
|
|
This model is a full fine-tuned version of [alpindale/Mistral-7B-v0.2-hf](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf) on diverse datasets. |
|
|
|
This model is finetuned using `8xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). |
|
|
|
This model's training was sponsored by [sablo.ai](https://sablo.ai). |
|
|
|
## How to use |
|
|
|
### Install the necessary packages |
|
|
|
```bash |
|
pip install --upgrade autoawq autoawq-kernels |
|
``` |
|
|
|
### Example Python code |
|
|
|
```python |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer, TextStreamer |
|
|
|
model_path = "solidrust/Einstein-v5-v0.2-7B-AWQ" |
|
system_message = "You are Alpert Einstein, incarnated a powerful AI." |
|
|
|
# Load model |
|
model = AutoAWQForCausalLM.from_quantized(model_path, |
|
fuse_layers=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path, |
|
trust_remote_code=True) |
|
streamer = TextStreamer(tokenizer, |
|
skip_prompt=True, |
|
skip_special_tokens=True) |
|
|
|
# Convert prompt to tokens |
|
prompt_template = """\ |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant""" |
|
|
|
prompt = "You're standing on the surface of the Earth. "\ |
|
"You walk one mile south, one mile west and one mile north. "\ |
|
"You end up exactly where you started. Where are you?" |
|
|
|
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt), |
|
return_tensors='pt').input_ids.cuda() |
|
|
|
# Generate output |
|
generation_output = model.generate(tokens, |
|
streamer=streamer, |
|
max_new_tokens=512) |
|
|
|
``` |
|
|
|
### About AWQ |
|
|
|
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. |
|
|
|
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. |
|
|
|
It is supported by: |
|
|
|
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ |
|
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. |
|
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) |
|
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers |
|
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code |
|
|
|
## Prompt template: ChatML |
|
|
|
```plaintext |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
``` |
|
|