scideberta-cs-tdm-pretrained-finetuned-ner-finetuned-ner

This model is a fine-tuned version of bert-base-uncased on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7548
  • Overall Precision: 0.5582
  • Overall Recall: 0.7048
  • Overall F1: 0.6230
  • Overall Accuracy: 0.9578
  • Datasetname F1: 0.6225
  • Hyperparametername F1: 0.5707
  • Hyperparametervalue F1: 0.6796
  • Methodname F1: 0.6812
  • Metricname F1: 0.5039
  • Metricvalue F1: 0.7097
  • Taskname F1: 0.5776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Datasetname F1 Hyperparametername F1 Hyperparametervalue F1 Methodname F1 Metricname F1 Metricvalue F1 Taskname F1
No log 1.0 132 0.6819 0.2314 0.3769 0.2867 0.9125 0.1270 0.2305 0.2479 0.4072 0.3119 0.0635 0.2366
No log 2.0 264 0.4337 0.3977 0.5687 0.4681 0.9429 0.4516 0.3704 0.5419 0.5900 0.2446 0.4340 0.4609
No log 3.0 396 0.3968 0.3617 0.6367 0.4613 0.9335 0.4828 0.3586 0.5649 0.5331 0.3190 0.4800 0.4585
0.5603 4.0 528 0.3730 0.3605 0.6327 0.4593 0.9363 0.4750 0.3789 0.6066 0.5376 0.3229 0.4571 0.4375
0.5603 5.0 660 0.4132 0.4650 0.6871 0.5546 0.9482 0.4943 0.4965 0.6577 0.6465 0.4387 0.5306 0.5039
0.5603 6.0 792 0.4071 0.4482 0.6884 0.5429 0.9468 0.5541 0.4341 0.5991 0.6037 0.4865 0.64 0.5688
0.5603 7.0 924 0.4077 0.4830 0.6952 0.5700 0.9508 0.5063 0.4953 0.7032 0.6397 0.4286 0.6263 0.5469
0.1161 8.0 1056 0.5215 0.5426 0.6925 0.6085 0.9577 0.6423 0.5190 0.7115 0.6711 0.5175 0.6286 0.5797
0.1161 9.0 1188 0.5192 0.4859 0.7020 0.5743 0.9518 0.5578 0.5195 0.5992 0.6571 0.4744 0.5532 0.5611
0.1161 10.0 1320 0.5301 0.5478 0.7020 0.6154 0.9563 0.5732 0.5782 0.7619 0.6462 0.4675 0.7253 0.5727
0.1161 11.0 1452 0.4965 0.5139 0.7048 0.5944 0.9531 0.5857 0.5290 0.7189 0.6639 0.4235 0.6476 0.5532
0.049 12.0 1584 0.6207 0.5713 0.6925 0.6261 0.9582 0.64 0.5377 0.7594 0.7207 0.5070 0.6136 0.5530
0.049 13.0 1716 0.6056 0.5360 0.7088 0.6104 0.9570 0.5921 0.5035 0.7000 0.7115 0.4648 0.6939 0.5854
0.049 14.0 1848 0.6540 0.5804 0.6925 0.6315 0.9599 0.6466 0.5344 0.7324 0.6874 0.5401 0.7083 0.5980
0.049 15.0 1980 0.5911 0.5068 0.7048 0.5896 0.9528 0.5399 0.5176 0.7150 0.6397 0.4625 0.6800 0.5865
0.0225 16.0 2112 0.5788 0.5186 0.7007 0.5961 0.9531 0.5874 0.5011 0.7177 0.6796 0.4810 0.6744 0.5517
0.0225 17.0 2244 0.6097 0.5399 0.6912 0.6062 0.9547 0.5811 0.5744 0.6900 0.6439 0.5033 0.7253 0.5470
0.0225 18.0 2376 0.7006 0.5714 0.6748 0.6188 0.9590 0.6471 0.5645 0.6465 0.6710 0.5426 0.6809 0.5755
0.0149 19.0 2508 0.6051 0.5400 0.7252 0.6190 0.9554 0.6443 0.5514 0.6547 0.6777 0.5132 0.6947 0.6
0.0149 20.0 2640 0.7220 0.5995 0.6884 0.6409 0.9605 0.6429 0.5570 0.6806 0.7339 0.5865 0.7416 0.5540
0.0149 21.0 2772 0.6912 0.5977 0.7034 0.6462 0.9599 0.6377 0.5387 0.7343 0.7281 0.5846 0.7273 0.5899
0.0149 22.0 2904 0.6952 0.5802 0.6939 0.6320 0.9574 0.5867 0.5445 0.7358 0.6951 0.5736 0.7473 0.5830
0.0097 23.0 3036 0.7600 0.6241 0.6912 0.6559 0.9618 0.6119 0.5895 0.7629 0.7356 0.5512 0.6897 0.5837
0.0097 24.0 3168 0.7184 0.5924 0.6980 0.6408 0.9598 0.6486 0.5640 0.7179 0.7146 0.5630 0.7174 0.5714
0.0097 25.0 3300 0.7120 0.5485 0.7007 0.6153 0.9566 0.6579 0.5441 0.6667 0.6993 0.4774 0.6522 0.5766
0.0097 26.0 3432 0.7914 0.6009 0.7088 0.6504 0.9583 0.6443 0.6070 0.7293 0.7082 0.5645 0.6737 0.5872
0.0065 27.0 3564 0.7986 0.5800 0.6952 0.6324 0.9589 0.6309 0.5521 0.7150 0.7281 0.4844 0.7097 0.5714
0.0065 28.0 3696 0.7767 0.6087 0.7007 0.6515 0.9599 0.6364 0.5824 0.7526 0.7169 0.5238 0.7097 0.6038
0.0065 29.0 3828 0.7435 0.6077 0.6912 0.6467 0.9612 0.6479 0.5674 0.7396 0.7088 0.5255 0.7333 0.6066
0.0065 30.0 3960 0.8305 0.6230 0.6857 0.6528 0.9613 0.6483 0.5650 0.7817 0.7341 0.4715 0.7174 0.5962
0.0051 31.0 4092 0.7180 0.5776 0.7088 0.6365 0.9583 0.6194 0.5825 0.7393 0.6874 0.4923 0.7021 0.5962
0.0051 32.0 4224 0.7526 0.5708 0.6857 0.6230 0.9585 0.64 0.5276 0.7246 0.7083 0.4627 0.6813 0.5922
0.0051 33.0 4356 0.7548 0.5582 0.7048 0.6230 0.9578 0.6225 0.5707 0.6796 0.6812 0.5039 0.7097 0.5776

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu102
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.