Phi-3.5-MultiCap-tool-embedding-new
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5049
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6704 | 0.2256 | 50 | 0.6574 |
0.5479 | 0.4512 | 100 | 0.5568 |
0.5243 | 0.6768 | 150 | 0.5327 |
0.5708 | 0.9024 | 200 | 0.5207 |
0.5026 | 1.1280 | 250 | 0.5135 |
0.4922 | 1.3536 | 300 | 0.5091 |
0.4631 | 1.5792 | 350 | 0.5064 |
0.5115 | 1.8049 | 400 | 0.5049 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for sofyc/Phi-3.5-MultiCap-tool-embedding-new
Base model
microsoft/Phi-3.5-mini-instruct